Line transversals of balls and smallest enclosing cylinders in three dimensions

被引:41
作者
Agarwal, PK
Aronov, B
Sharir, M
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/PL00009427
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We establish a near-cubic upper bound on the complexity of the space of line transversals of a collection of n balls in three dimensions, and show that the bound is almost tight, in the worst case. We apply this bound to obtain a near-cubic algorithm for computing a smallest infinite cylinder enclosing a given set of points or balls in 3-space. We also present an approximation algorithm for computing a Smallest enclosing cylinder.
引用
收藏
页码:373 / 388
页数:16
相关论文
共 29 条
[21]   RAY SHOOTING ON TRIANGLES IN 3-SPACE [J].
PELLEGRINI, M .
ALGORITHMICA, 1993, 9 (05) :471-494
[22]  
PELLEGRINI M, 1990, PROCEEDINGS OF THE SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, P177, DOI 10.1145/98524.98563
[23]  
SCHOMER E, 1996, P 8 CAN C COMP GEOM, P264
[24]   ALMOST TIGHT UPPER-BOUNDS FOR LOWER ENVELOPES IN HIGHER DIMENSIONS [J].
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (03) :327-345
[25]  
SHARIR M, 1995, DAVENPORTSCHINZEL SE
[26]  
SRINIVASAN V, 1996, SIAM NEWS, V29, P8
[27]  
SURESH K, 1994, MANUFACTURING REV, V7, P304
[28]   UPPER-BOUNDS ON GEOMETRIC PERMUTATIONS FOR CONVEX-SETS [J].
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (01) :27-33
[29]  
WENGER R, 1997, CRC DISCR MATH APPL, P63