Ethylene is one of the key elements for cell death and Defense response control in the Arabidopsis lesion mimic mutant vad1

被引:105
作者
Bouchez, Olivier
Huard, Carine
Lorrain, Severine
Roby, Dominique
Balague, Claudine [1 ]
机构
[1] CNRS 441, INRA, UMR 2594, Lab Interact Plantes Microorganismes, F-31320 Castanet Tolosan, France
[2] Univ Lausanne, Ctr Integrat Genom, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1104/pp.107.106302
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Although ethylene is involved in the complex cross talk of signaling pathways regulating plant defense responses to microbial attack, its functions remain to be elucidated. The lesion mimic mutant vad1-1 (for vascular associated death), which exhibits the light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, is a good model for studying the role of ethylene in programmed cell death and defense. Here, we demonstrate that expression of genes associated with ethylene synthesis and signaling is enhanced in vad1-1 under lesion-promoting conditions and after plant-pathogen interaction. Analyses of the progeny from crosses between vad1-1 plants and either 35S::ERF1 transgenic plants or ein2-1, ein3-1, ein4-1, ctr1-1, or eto2-1 mutants revealed that the vad1-1 cell death and defense phenotypes are dependent on ethylene biosynthesis and signaling. In contrast, whereas vad1-1-dependent increased resistance was abolished by ein2, ein3, and ein4 mutations, positive regulation of ethylene biosynthesis (eto2-1) or ethylene responses (35::ERF1) did not exacerbate this phenotype. In addition, VAD1 expression in response to a hypersensitive response-inducing bacterial pathogen is dependent on ethylene perception and signaling. These results, together with previous data, suggest that VAD1 could act as an integrative node in hormonal signaling, with ethylene acting in concert with salicylic acid as a positive regulator of cell death propagation.
引用
收藏
页码:465 / 477
页数:13
相关论文
共 67 条
[1]  
Abeles FB., 1992, ETHYLENE PLANT BIOL
[2]   Signal transduction systems regulating fruit ripening [J].
Adams-Phillips, L ;
Barry, C ;
Giovannoni, J .
TRENDS IN PLANT SCIENCE, 2004, 9 (07) :331-338
[3]   Arabidopsis radical-induced cell death1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses [J].
Ahlfors, R ;
Lång, S ;
Overmyer, K ;
Jaspers, P ;
Brosché, M ;
Taurianinen, A ;
Kollist, H ;
Tuominen, H ;
Belles-Boix, E ;
Piippo, M ;
Inzé, D ;
Palva, ET ;
Kangasjärvi, J .
PLANT CELL, 2004, 16 (07) :1925-1937
[4]   HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family [J].
Balagué, C ;
Lin, BQ ;
Alcon, C ;
Flottes, G ;
Malmström, S ;
Köhler, C ;
Neuhaus, G ;
Pelletier, G ;
Gaymard, F ;
Roby, D .
PLANT CELL, 2003, 15 (02) :365-379
[5]   DISEASE DEVELOPMENT IN ETHYLENE-INSENSITIVE ARABIDOPSIS-THALIANA INFECTED WITH VIRULENT AND AVIRULENT PSEUDOMONAS AND XANTHOMONAS PATHOGENS [J].
BENT, AF ;
INNES, RW ;
ECKER, JR ;
STASKAWICZ, BJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1992, 5 (05) :372-378
[6]   Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J].
Berrocal-Lobo, M ;
Molina, A ;
Solano, R .
PLANT JOURNAL, 2002, 29 (01) :23-32
[7]   Ethylene: A gaseous signal molecule in plants [J].
Bleecker, AB ;
Kende, H .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :1-+
[8]  
Boller T., 2018, PLANT HORMONE ETHYLE, P293
[9]   Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis [J].
Boter, M ;
Ruíz-Rivero, O ;
Abdeen, A ;
Prat, S .
GENES & DEVELOPMENT, 2004, 18 (13) :1577-1591
[10]   Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense [J].
Brodersen, P ;
Petersen, M ;
Pike, HM ;
Olszak, B ;
Skov, S ;
Odum, N ;
Jorgensen, LB ;
Brown, RE ;
Mundy, J .
GENES & DEVELOPMENT, 2002, 16 (04) :490-502