Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development

被引:579
作者
Ivkovic, S
Yoon, BS
Popoff, SN
Safadi, FF
Libuda, DE
Stephenson, RC
Daluiski, A
Lyons, KM [1 ]
机构
[1] Univ Calif Los Angeles, Dept Orthopaed Surg, David Geffen Sch Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA
[4] Temple Univ, Sch Med, Dept Anat & Cell Biol, Philadelphia, PA 19140 USA
[5] Fibrogen, San Francisco, CA 94080 USA
来源
DEVELOPMENT | 2003年 / 130卷 / 12期
关键词
CCN; CTGF; chondrogenesis; angiogenesis; mutant;
D O I
10.1242/dev.00505
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coordinated production and remodeling of the extracellular matrix is essential during development. It is of particular importance for skeletogenesis, as the ability of cartilage and bone to provide structural support is determined by the composition and organization of the extracellular matrix. Connective tissue growth factor (CTGF, CCN2) is a secreted protein containing several domains that mediate interactions with growth factors, integrins and extracellular matrix components. A role for CTGF in extracellular matrix production is suggested by its ability to mediate collagen deposition during wound healing. CTGF also induces neovascularization in vitro, suggesting a role in angiogenesis in vivo. To test whether CTGF is required for extracellular matrix remodeling and/or angiogenesis during development, we examined the pattern of Ctgf expression and generated Ctgf-deficient mice. Ctgf is expressed in a variety of tissues in midgestation embryos, with highest levels in vascular tissues and maturing chondrocytes. We confirmed that CTGF is a crucial regulator of cartilage extracellular matrix remodeling by generating Ctgf(-/-) mice. Ctgf deficiency leads to skeletal dysmorphisms as a result of impaired chondrocyte proliferation and extracellular matrix composition within the hypertrophic zone. Decreased expression of specific extracellular matrix components and matrix metalloproteinases suggests that matrix remodeling within the hypertrophic zones in Ctgf mutants is defective. The mutant phenotype also revealed a role for Ctgf in growth plate angiogenesis. Hypertrophic zones of Ctgf mutant growth plates are expanded, and endochondral ossification is impaired. These defects are linked to decreased expression of vascular endothelial growth factor (VEGF) in the hypertrophic zones of Ctgf mutants. These results demonstrate that CTGF is important for cell proliferation and matrix remodeling during chondrogenesis, and is a key regulator coupling extracellular matrix remodeling to angiogenesis at the growth plate.
引用
收藏
页码:2779 / 2791
页数:13
相关论文
共 67 条
[11]   Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids - Identification as heparin-regulated M-r 10,000 forms of connective tissue growth factor [J].
Brigstock, DR ;
Steffen, CL ;
Kim, GY ;
Vegunta, RK ;
Diehl, JR ;
Harding, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :20275-20282
[12]  
Carlevaro MF, 2000, J CELL SCI, V113, P59
[13]   The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts [J].
Chen, CC ;
Chen, NY ;
Lau, LF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :10443-10452
[14]   The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts [J].
Chen, CC ;
Mo, FE ;
Lau, LF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (50) :47329-47337
[15]   Authentic matrix vesicles contain active metalloproteases (MMP) -: A role for matrix vesicle-associated MMP-13 in activation of transforming growth factor-β [J].
D'Angelo, M ;
Billings, PC ;
Pacifici, M ;
Leboy, PS ;
Kirsch, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (14) :11347-11353
[16]   Connective tissue growth factor: a novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? [J].
Dammeier, J ;
Brauchle, M ;
Falk, W ;
Grotendorst, GR ;
Werner, S .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1998, 30 (08) :909-922
[17]   Transforming growth factor-β and connective tissue growth factor:: key cytokines in scleroderma pathogenesis [J].
Denton, CP ;
Abraham, DJ .
CURRENT OPINION IN RHEUMATOLOGY, 2001, 13 (06) :505-511
[18]   Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones [J].
Engsig, MT ;
Chen, QJ ;
Vu, TH ;
Pedersen, AC ;
Therkidsen, B ;
Lund, LR ;
Henriksen, K ;
Lenhard, T ;
Foged, NT ;
Werb, Z ;
Delaisse, JM .
JOURNAL OF CELL BIOLOGY, 2000, 151 (04) :879-889
[19]   Increased MMP-2 expression in connective tissue growth factor over-expression vascular smooth muscle cells [J].
Fan, WH ;
Karnovsky, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (12) :9800-9805
[20]   Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor [J].
Frazier, K ;
Williams, S ;
Kothapalli, D ;
Klapper, H ;
Grotendorst, GR .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1996, 107 (03) :404-411