High-resolution electrohydrodynamic jet printing

被引:1277
作者
Park, Jang-Ung
Hardy, Matt
Kang, Seong Jun
Barton, Kira
Adair, Kurt
Mukhopadhyay, Deep Kishore
Lee, Chang Young
Strano, Michael S.
Alleyne, Andrew G.
Georgiadis, John G.
Ferreira, Placid M.
Rogers, John A.
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Beckman Inst, Urbana, IL 61801 USA
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[3] Korea Res Inst Stand & Sci, Div Adv Technol, Taejon 305340, South Korea
[4] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1974
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1 mu m demonstrate potential applications in printed electronics.
引用
收藏
页码:782 / 789
页数:8
相关论文
共 46 条
[1]   Rapid functionalization of cantilever array sensors by inkjet printing [J].
Bietsch, A ;
Zhang, JY ;
Hegner, M ;
Lang, HP ;
Gerber, C .
NANOTECHNOLOGY, 2004, 15 (08) :873-880
[2]   Inkjet printing of polymer thin-film transistor circuits [J].
Burns, SE ;
Cain, P ;
Mills, J ;
Wang, JZ ;
Sirringhaus, H .
MRS BULLETIN, 2003, 28 (11) :829-834
[3]   Inkjet printing for materials and devices [J].
Calvert, P .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3299-3305
[4]   Film morphology and thin film transistor performance of solution-processed oligothiophenes [J].
Chang, PC ;
Lee, J ;
Huang, D ;
Subramanian, V ;
Murphy, AR ;
Frechet, JMJ .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4783-4789
[5]  
Chang SC, 1999, ADV MATER, V11, P734, DOI 10.1002/(SICI)1521-4095(199906)11:9<734::AID-ADMA734>3.0.CO
[6]  
2-D
[7]   Scaling laws for pulsed electrohydrodynamic drop formation [J].
Chen, C. -H. ;
Saville, D. A. ;
Aksay, I. A. .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[8]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502
[9]   Ink-jet printing, self-assembled polyelectrolytes, and electroless plating: Low cost fabrication of circuits on a flexible substrate at room temperature [J].
Cheng, K ;
Yang, MH ;
Chiu, WWW ;
Huang, CY ;
Chang, J ;
Ying, TF ;
Yang, Y .
MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (04) :247-264
[10]  
Choi D. H. L., 1993, P IS TS 9 INT C ADV