Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination

被引:172
作者
Pracharoenwattana, I [1 ]
Cornah, JE [1 ]
Smith, SM [1 ]
机构
[1] Univ Edinburgh, Sch Biol Sci, Inst Mol Plant Sci, Edinburgh EH9 3JH, Midlothian, Scotland
关键词
D O I
10.1105/tpc.105.031856
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We tested the hypothesis that peroxisomal citrate synthase (CSY) is required for carbon transfer from peroxisomes to mitochondria during respiration of triacylglycerol in Arabidopsis thaliana seedlings. Two genes encoding peroxisomal CSY are expressed in Arabidopsis seedlings, and seeds from plants with both CSY genes disrupted were dormant and did not metabolize triacylglycerol. Germination was achieved by removing the seed coat and supplying sucrose, but the seedlings still did not use triacylglycerol. The mutant seedlings were resistant to 2,4-dichlorophenoxybutyric acid, indicating a block in peroxisomal beta-oxidation, and were unable to develop further after transfer to soil. The mutant phenotype was complemented with a cDNA encoding CSY with either its native peroxisomal targeting sequence (PTS2) or a heterologous PTS1 sequence from pumpkin (Cucurbita pepo) malate synthase. These results suggest that peroxisomal CSY in Arabidopsis is not only a key enzyme of the glyoxylate cycle but also catalyzes an essential step in the respiration of fatty acids. We conclude that citrate is exported from the peroxisome during fatty acid respiration, whereas in yeast, acetylcarnitine is exported.
引用
收藏
页码:2037 / 2048
页数:12
相关论文
共 47 条
[11]   INCREASED FATTY-ACID BETA-OXIDATION AFTER GLUCOSE STARVATION IN MAIZE ROOT-TIPS [J].
DIEUAIDE, M ;
BROUQUISSE, R ;
PRADET, A ;
RAYMOND, P .
PLANT PHYSIOLOGY, 1992, 99 (02) :595-600
[12]   Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle [J].
Eastmond, PJ ;
Germain, V ;
Lange, PR ;
Bryce, JH ;
Smith, SM ;
Graham, IA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5669-5674
[13]   Re-examining the role of the glyoxylate cycle in oilseeds [J].
Eastmond, PJ ;
Graham, IA .
TRENDS IN PLANT SCIENCE, 2001, 6 (02) :72-77
[14]  
Eccleston VS, 1998, PLANT CELL, V10, P613, DOI 10.1105/tpc.10.4.613
[15]   PEROXISOMAL AND MITOCHONDRIAL CARNITINE ACETYLTRANSFERASES OF SACCHAROMYCES-CEREVISIAE ARE ENCODED BY A SINGLE-GENE [J].
ELGERSMA, Y ;
VANROERMUND, CWT ;
WANDERS, RJA ;
TABAK, HF .
EMBO JOURNAL, 1995, 14 (14) :3472-3479
[16]   Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP [J].
Footitt, S ;
Slocombe, SP ;
Larner, V ;
Kurup, S ;
Wu, YS ;
Larson, T ;
Graham, I ;
Baker, A ;
Holdsworth, M .
EMBO JOURNAL, 2002, 21 (12) :2912-2922
[17]   Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana [J].
Fulda, M ;
Schnurr, J ;
Abbadi, A ;
Heinz, E ;
Browse, J .
PLANT CELL, 2004, 16 (02) :394-405
[18]   Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid β-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings [J].
Germain, V ;
Rylott, EL ;
Larson, TR ;
Sherson, SM ;
Bechtold, N ;
Carde, JP ;
Bryce, JH ;
Graham, IA ;
Smith, SM .
PLANT JOURNAL, 2001, 28 (01) :1-12
[19]   Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies [J].
Hayashi, M ;
Aoki, M ;
Kato, A ;
Kondo, M ;
Nishimura, M .
PLANT JOURNAL, 1996, 10 (02) :225-234
[20]   2,4-dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid β-oxidation [J].
Hayashi, M ;
Toriyama, K ;
Kondo, M ;
Nishimura, M .
PLANT CELL, 1998, 10 (02) :183-195