On the rate of approximations for maximum likelihood tests in change-point models

被引:53
作者
Gombay, E [1 ]
Horvath, L [1 ]
机构
[1] UNIV UTAH, SALT LAKE CITY, UT 84112 USA
关键词
likelihood ratio processes; maximum likelihood estimators; weighted approximations; extreme value; Brownian bridge;
D O I
10.1006/jmva.1996.0007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotics of maximum-likelihood ratio-type statistics for testing a sequence of observations for no change in parameters against a possible change while some nuisance parameters remain constant over time. We obtain extreme value as well as Gaussian-type approximations for the likelihood ratio. We get necessary and sufficient conditions for the weak convergence of supremum and L(p)-functionals of the likelihood ration process. We also approximate the maximum Likelihood ratio with Omstein-Uhlenbeck processes and obtain bounds for the rate of approximation. We show that the Ornstein-Uhlenbeck approach is superior to the extreme value limit in case of moderate sample sizes. (C) 1996 Academic Press, Inc.
引用
收藏
页码:120 / 152
页数:33
相关论文
共 33 条
[1]  
[Anonymous], SELECTED TABLES MATH
[2]   APPROXIMATIONS OF WEIGHTED EMPIRICAL AND QUANTILE PROCESSES [J].
CSORGO, M ;
HORVATH, L .
STATISTICS & PROBABILITY LETTERS, 1986, 4 (06) :275-280
[3]   CONVERGENCE OF INTEGRALS OF UNIFORM EMPIRICAL AND QUANTILE PROCESSES [J].
CSORGO, M ;
HORVATH, L ;
SHAO, QM .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 45 (02) :283-294
[4]  
CSORGO M, 1988, HDB STATISTICS, V7, P275
[5]  
CsoRGo M., 1993, Weighted approximations in probability and statistics
[6]   A LIMIT THEOREM FOR THE MAXIMUM OF NORMALIZED SUMS OF INDEPENDENT RANDOM VARIABLES [J].
DARLING, DA ;
ERDOS, P .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (01) :143-155
[7]   CROSSING PROBABILITIES FOR A SQUARE ROOT BOUNDARY BY A BESSEL PROCESS [J].
DELONG, DM .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1981, 10 (21) :2197-2213
[8]   EXTENSIONS OF RESULTS OF KOMLOS, MAJOR, AND TUSNADY TO THE MULTIVARIATE CASE [J].
EINMAHL, U .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 28 (01) :20-68
[9]   STRONG INVARIANCE-PRINCIPLES FOR PARTIAL-SUMS OF INDEPENDENT RANDOM VECTORS [J].
EINMAHL, U .
ANNALS OF PROBABILITY, 1987, 15 (04) :1419-1440
[10]   AN APPLICATION OF THE MAXIMUM-LIKELIHOOD TEST TO THE CHANGE-POINT PROBLEM [J].
GOMBAY, E ;
HORVATH, L .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 50 (01) :161-171