Role of the intracellular domains of LRP5 and LRP6 in activating the Wnt canonical pathway

被引:53
作者
Mi, KH [1 ]
Johnson, GVW [1 ]
机构
[1] Univ Alabama, Dept Psychiat, Birmingham, AL 35294 USA
关键词
Wnt signaling; beta-catenin; TCF/LEF-1; LRP5/6;
D O I
10.1002/jcb.20400
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
LDL-receptor related proteins 5 and 6 (LRP5/6) are co-receptors of Frizzled receptors that mediate Wnt-induced activation of the transcription factor family TCF/LEF-1. Even though LRP5 and LRP6 are highly homologous, LRP6, but not LRP5, is expressed primarily in the nervous system and deletion of the LRP6 gene results in significant brain abnormalities, while deletion of LRP5 results in primarily decreased bone density. Additionally, the exact function of LRP5 and LRP6 have not been clearly defined, although it is clear that they both play key roles in the Wnt canonical pathway. In this study the role of the intracellular domains of LRP5/6 in mediating Wnt signaling was examined. In the absence of exogenous Wnt 3a, full-length (FL) LRP6, but not LRP5, increased TCF/LEF-1 transcriptional activity, however both significantly potentiated Wnt 3a-induced TCF/LEF-1 activation. In contrast to the findings with the FL constructs, the intracellular domains (membrane-anchored and cytosolic) of both LRP5 and LRP6 significantly increased TCF/LEF-1 activation in the absence of Wnt 3a, and potentiated the Wnt 3a-induced decrease in beta-catenin phosphorylation, increase in free beta-catenin levels and the increase in TCF/LEF-1 activity. These findings demonstrate that: (1) LRP5 and LRP6 differentially modulate TCF/LEF-1 activation in the absence of Wnt 3a and (2) the intracellular C-terminal domains of LRP5/6 potentiate Wnt 3a-induced TCF/LEF-1 activation whether or not they are membrane-anchored. These findings provide significant new insights into the roles of LRP5/6 in modulating canonical Wnt signaling. (c) 2005 Wiley-Liss, Inc.
引用
收藏
页码:328 / 338
页数:11
相关论文
共 45 条
[1]   Characterization of Wnt-1 and Wnt-2 induced growth alterations and signaling pathways in NIH3T3 fibroblasts [J].
Bafico, A ;
Gazit, A ;
Wu-Morgan, SS ;
Yaniv, A ;
Aaronson, SA .
ONCOGENE, 1998, 16 (21) :2819-2825
[2]   A new member of the frizzled family from Drosophila functions as a Wingless receptor [J].
Bhanot, P ;
Brink, M ;
Samos, CH ;
Hsieh, JC ;
Wang, YS ;
Macke, JP ;
Andrew, D ;
Nathans, J ;
Nusse, R .
NATURE, 1996, 382 (6588) :225-230
[3]   Signaling specificity by frizzled receptors in Drosophila [J].
Boutros, M ;
Mihaly, J ;
Bouwmeester, T ;
Mlodzik, M .
SCIENCE, 2000, 288 (5472) :1825-1828
[4]   Truncated mutants of the putative Wnt receptor LRP6/Arrow can stabilize β-catenin independently of Frizzled proteins [J].
Brennan, K ;
Gonzalez-Sancho, JM ;
Castelo-Soccio, LA ;
Howe, LR ;
Brown, AMC .
ONCOGENE, 2004, 23 (28) :4873-4884
[5]   Functional characterization of WNT7A signaling in PC12 cells -: Interaction with a FZD5•LRP6 receptor complex and modulation by dickkopf proteins [J].
Caricasole, A ;
Ferraro, T ;
Iacovelli, L ;
Barletta, E ;
Caruso, A ;
Melchiorri, D ;
Terstappen, GC ;
Nicoletti, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (39) :37024-37031
[6]  
Dale TC, 1998, BIOCHEM J, V329, P209
[7]   Expression of the Type I diabetes-associated gene LRP5 in macrophages, vitamin A system cells, and the islets of Langerhans suggests multiple potential roles in diabetes [J].
Figueroa, DJ ;
Hess, JF ;
Ky, B ;
Brown, SD ;
Sandig, V ;
Hermanowski-Vosatka, A ;
Twells, RCJ ;
Todd, JA ;
Austin, CP .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2000, 48 (10) :1357-1368
[8]   LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development [J].
Gong, YQ ;
Slee, RB ;
Fukai, N ;
Rawadi, G ;
Roman-Roman, S ;
Reginato, AM ;
Wang, HW ;
Cundy, T ;
Glorieux, FH ;
Lev, D ;
Zacharin, M ;
Oexle, K ;
Marcelino, J ;
Suwairi, W ;
Heeger, S ;
Sabatakos, G ;
Apte, S ;
Adkins, WN ;
Allgrove, J ;
Arslan-Kirchner, M ;
Batch, JA ;
Beighton, P ;
Black, GCM ;
Boles, RG ;
Boon, LM ;
Borrone, C ;
Brunner, HG ;
Carle, GF ;
Dallapiccola, B ;
De Paepe, A ;
Floege, B ;
Halfhide, ML ;
Hall, B ;
Hennekam, RC ;
Hirose, T ;
Jans, A ;
Jüppner, H ;
Kim, CA ;
Keppler-Noreuil, K ;
Kohlschuetter, A ;
LaCombe, D ;
Lambert, M ;
Lemyre, E ;
Letteboer, T ;
Peltonen, L ;
Ramesar, RS ;
Romanengo, M ;
Somer, H ;
Steichen-Gersdorf, E ;
Steinmann, B .
CELL, 2001, 107 (04) :513-523
[9]  
Grove EA, 1998, DEVELOPMENT, V125, P2315
[10]   Propagation and localization of Wnt signaling [J].
Gumbiner, BM .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (04) :430-435