Poissonian tessellations of the Euclidean space. An extension of a result of R.E. Miles

被引:6
作者
Calka, P [1 ]
机构
[1] Univ Lyon 1, Probabil Lab, F-69622 Villeurbanne, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 332卷 / 06期
关键词
D O I
10.1016/S0764-4442(01)01885-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1973, R.E. Miles obtained an explicit characterization of the typical cell of the planar Poissonian tessellation, by means of the distributions of the indisc and the triangle circumscribed to the cell. In this Note, we propose a different proof using the classical Slivnyak formula for Poisson point processes. Not only the method is simple and rigorous, but it also extends R.E. Miles' result to any dimension d greater than or equal to 2. We deduce from it some other properties of the geometrical characteristics of the typical cell. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:557 / 562
页数:6
相关论文
共 14 条
[1]   PROPERTIES OF ERGODIC RANDOM MOSAIC PROCESSES [J].
COWAN, R .
MATHEMATISCHE NACHRICHTEN, 1980, 97 :89-102
[3]  
GOLDMAN A, 2000, 0002 LAPCS
[4]  
Goldman PA, 1998, ANN PROBAB, V26, P1727
[5]   RANDOM DISTRIBUTION OF LINES IN A PLANE [J].
GOUDSMIT, S .
REVIEWS OF MODERN PHYSICS, 1945, 17 (2-3) :321-322
[6]  
Kovalenko I. N., 1999, J APPL MATH STOCHAST, V12, P301
[7]  
Matheron G., 1975, Random sets and integral geometry
[8]  
Miles R.E., 1969, ADV APPL PROBAB, V1, P211