Spectrum of certain Poisson mosaics of the plane and convex hull of a Brownian bridge

被引:26
作者
Goldman, A
机构
关键词
D O I
10.1007/s004400050038
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The spectral empirical function of a homogeneous, isotropic, Poisson mosaic process is a functional of the perimeter of the convex hull of planar Brownian bridge. Some geometrical identities follow.
引用
收藏
页码:57 / 83
页数:27
相关论文
共 23 条
[1]  
[Anonymous], TABLES INTEGRAL TRAN
[2]  
Bonnesen T., 1971, THEORIE KONVEXEN KOR
[3]   A NOTE ON PLANAR BROWNIAN-MOTION [J].
BRASSESCO, S .
ANNALS OF PROBABILITY, 1992, 20 (03) :1498-1503
[4]   PROPERTIES OF ERGODIC RANDOM MOSAIC PROCESSES [J].
COWAN, R .
MATHEMATISCHE NACHRICHTEN, 1980, 97 :89-102
[5]  
COWAN R, 1978, ADV APPL PROB S, V10, P47
[6]  
El Bachir M., 1983, THESIS U P SABATIER
[7]  
GOLDMAN A, 1995, CR ACAD SCI I-MATH, V320, P463
[8]   RANDOM DISTRIBUTION OF LINES IN A PLANE [J].
GOUDSMIT, S .
REVIEWS OF MODERN PHYSICS, 1945, 17 (2-3) :321-322
[9]  
HALL P., 1988, INTRO THEORY COVERAG
[10]  
Hersch J., 1960, Z. Angew. Math. Phys., V11, P387, DOI DOI 10.1007/BF01604498