Stabilizing quantum information

被引:166
作者
Zanardi, P [1 ]
机构
[1] Inst Sci Interchange Fdn, I-10133 Turin, Italy
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 01期
关键词
D O I
10.1103/PhysRevA.63.012301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamical-algebraic structure underlying all the schemes for quantum information stabilization is argued to be fully contained in the reducibility of the operator algebra describing the interaction with the environment of the coding quantum system. This property amounts to the existence of a nontrivial group of symmetries for the global dynamics. We provide a unified framework that allows us to build systematically additional classes of error correcting codes and noiseless subsystems. It is shown that by using symmetrization strategies one can artificially produce noiseless subsystems supporting universal quantum computation.
引用
收藏
页码:012301 / 012301
页数:4
相关论文
共 30 条
[1]   Universal fault-tolerant quantum computation on decoherence-free subspaces [J].
Bacon, D ;
Kempe, J ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1758-1761
[2]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[3]  
CORNWELL JF, 1984, GROUP THEORY PHYSICS, V1
[4]   Suppressing environmental noise in quantum computation through pulse control [J].
Duan, LM ;
Guo, GC .
PHYSICS LETTERS A, 1999, 261 (3-4) :139-144
[5]   Preserving coherence in quantum computation by pairing quantum bits [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1953-1956
[6]   Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW A, 1998, 57 (02) :737-741
[7]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[8]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[9]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528
[10]  
Knill E., quant-ph/9608048