Optical Excitations and Field Enhancement in Short Graphene Nanoribbons

被引:35
作者
Cocchi, Caterina [1 ,2 ]
Prezzi, Deborah [1 ]
Ruini, Alice [1 ,2 ]
Benassi, Enrico [1 ]
Caldas, Marilia J. [3 ]
Corni, Stefano [1 ]
Molinari, Elisa [1 ,2 ]
机构
[1] CNR Ist Nanosci, Ctr S3, I-41125 Modena, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Fis, I-41125 Modena, Italy
[3] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2012年 / 3卷 / 07期
基金
巴西圣保罗研究基金会;
关键词
PLASMONICS; SIZE; SPECTROSCOPY; PHOTONICS; TERAHERTZ; EMISSION; PHYSICS; SHAPE;
D O I
10.1021/jz300164p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.
引用
收藏
页码:924 / 929
页数:6
相关论文
共 62 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[5]   Graphene nanoribbons: Photonic crystal waveguide analogy and minigap stripes [J].
Benisty, Henri .
PHYSICAL REVIEW B, 2009, 79 (15)
[6]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[7]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[8]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[9]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[10]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473