Efficient vector and parallel manipulation of tensor products

被引:36
作者
Buis, PE
Dyksen, WR
机构
[1] Department of Computer Science, College of Sciences and Humanities, Ball State University, Muncie
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 1996年 / 22卷 / 01期
关键词
algorithms; performance; LAPACK; parallel; tensor product; vector;
D O I
10.1145/225545.225548
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present efficient vector and parallel methods for manipulating tensor products of matrices. We consider both computing the matrix-vector product (A(1) x ... x A(K))x and solving the system of linear equations (A(1) x ... x A(K))x = b. The methods described are independent of K. We accompany this article with a companion algorithm which describes an implementation of a complete set of tensor product routines based on LAPACK and the Level 2 and 3 Basic Linear Algebra Subprograms (BLAS) which provide vectorization and parallelization.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 8 条
  • [1] Anderson E., 1992, LAPACK User's Guide
  • [2] De Boor C., 1979, ACM Transactions on Mathematical Software, V5, P173, DOI 10.1145/355826.355831
  • [3] AN EXTENDED SET OF FORTRAN BASIC LINEAR ALGEBRA SUBPROGRAMS
    DONGARRA, JJ
    DUCROZ, J
    HAMMARLING, S
    HANSON, RJ
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (01): : 1 - 17
  • [4] DONGARRA JJ, 1988, 88 MATH COMP SCI DIV
  • [5] TENSOR PRODUCT GENERALIZED ADI METHODS FOR SEPARABLE ELLIPTIC PROBLEMS
    DYKSEN, WR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (01) : 59 - 76
  • [6] TENSOR SPLINE APPROXIMATION
    GROSSE, E
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 34 (DEC) : 29 - 41
  • [7] Halmos PR., 1958, FINITE DIMENSIONAL V
  • [8] PEREYRA V, 1973, MATH COMPUT, V27, P595, DOI 10.1090/S0025-5718-1973-0395196-6