Integrable sigma models with θ = π -: art. no. 104429

被引:35
作者
Fendley, P [1 ]
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.63.104429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A fundamental result relevant to spin chains and two-dimensional disordered systems is that the sphere sigma model with instanton coupling theta=pi has a nontrivial low-energy fixed point and a gapless spectrum. This result is extended to two series of sigma models with theta = pi: the SU(N)/SO(N) sigma models flow to the SU(N)(1) Wess-Zumino-Witten theory,while the O(2N)/O(N)x O(N) models flow to O(2N)(1) (2N-free Majorana fermions). These models are integrable, and the exact quasiparticle spectra and S matrices are found. One interesting feature is that charges fractionalize when theta = pi. I compute the energy in a background field, and verify that the perturbative expansions for theta =0 and pi are the same as they must he. I discuss the flows between the two sequences of models, and also argue that the analogous sigma models with Sp(2N) symmetry, the Sp(2N)/U(N) models, flow to Sp(2N)(1).
引用
收藏
页数:19
相关论文
共 53 条
[1]   EXACT S-MATRICES FOR ANOMALY-FREE NON-LINEAR SIGMA-MODELS ON SYMMETRIC-SPACES [J].
ABDALLA, E ;
ABDALLA, MCB ;
FORGER, M .
NUCLEAR PHYSICS B, 1988, 297 (02) :374-400
[2]   THE QUANTUM HALL-EFFECTS, ORTHO-MODELS AT THETA=PI AND QUANTUM SPIN CHAINS [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1985, 257 (03) :397-406
[3]   CRITICAL-BEHAVIOR OF SU(N) QUANTUM CHAINS AND TOPOLOGICAL NON-LINEAR SIGMA-MODELS [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1988, 305 (04) :582-596
[4]  
Affleck I., 1988, Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena
[5]   DERIVATION OF THE CHIRAL GROSS-NEVEU SPECTRUM FOR ARBITRARY SU(N) SYMMETRY [J].
ANDREI, N ;
LOWENSTEIN, JH .
PHYSICS LETTERS B, 1980, 90 (1-2) :106-110
[6]  
ANDREI N, 1698, PHYS REV LETT, V43, P1979
[7]  
BAIS FA, 1987, NUCL PHYS B, V279, P561, DOI 10.1016/0550-3213(87)90010-1
[8]   EXACT MASS GAP OF THE CHIRAL SU(N)XSU(N) MODEL [J].
BALOG, J ;
NAIK, S ;
NIEDERMAYER, F ;
WEISZ, P .
PHYSICAL REVIEW LETTERS, 1992, 69 (06) :873-876
[9]   EXACT S-MATRIX OF THE CHIRAL INVARIANT SU(N) THIRRING MODEL [J].
BERG, B ;
WEISZ, P .
NUCLEAR PHYSICS B, 1978, 146 (01) :205-214
[10]  
BERNARD D, CONDMAT0003075