Integrable sigma models with θ = π -: art. no. 104429

被引:35
作者
Fendley, P [1 ]
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.63.104429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A fundamental result relevant to spin chains and two-dimensional disordered systems is that the sphere sigma model with instanton coupling theta=pi has a nontrivial low-energy fixed point and a gapless spectrum. This result is extended to two series of sigma models with theta = pi: the SU(N)/SO(N) sigma models flow to the SU(N)(1) Wess-Zumino-Witten theory,while the O(2N)/O(N)x O(N) models flow to O(2N)(1) (2N-free Majorana fermions). These models are integrable, and the exact quasiparticle spectra and S matrices are found. One interesting feature is that charges fractionalize when theta = pi. I compute the energy in a background field, and verify that the perturbative expansions for theta =0 and pi are the same as they must he. I discuss the flows between the two sequences of models, and also argue that the analogous sigma models with Sp(2N) symmetry, the Sp(2N)/U(N) models, flow to Sp(2N)(1).
引用
收藏
页数:19
相关论文
共 53 条
[31]   3-LOOP BETA-FUNCTIONS OF NON-LINEAR SIGMA-MODELS ON SYMMETRIC-SPACES [J].
HIKAMI, S .
PHYSICS LETTERS B, 1981, 98 (03) :208-210
[32]   FROM A(M-1) TRIGONOMETRIC S-MATRICES TO THE THERMODYNAMIC BETHE-ANSATZ [J].
HOLLOWOOD, TJ .
PHYSICS LETTERS B, 1994, 320 (1-2) :43-51
[33]   EXACT RESULTS IN THE TWO-DIMENSIONAL U(1)-SYMMETRIC THIRRING MODEL [J].
JAPARIDZE, GI ;
NERSESYAN, AA ;
WIEGMANN, PB .
NUCLEAR PHYSICS B, 1984, 230 (04) :511-547
[34]   Quantum Hall plateau transitions in disordered superconductors [J].
Kagalovsky, V ;
Horovitz, B ;
Avishai, Y ;
Chalker, JT .
PHYSICAL REVIEW LETTERS, 1999, 82 (17) :3516-3519
[35]   BOUND-STATE PROBLEM IN 1+1 DIMENSIONAL FIELD-THEORIES [J].
KAROWSKI, M .
NUCLEAR PHYSICS B, 1979, 153 (1-2) :244-252
[36]   COMPLETE S-MATRIX OF THE O(2N) GROSS-NEVEU MODEL [J].
KAROWSKI, M ;
THUN, HJ .
NUCLEAR PHYSICS B, 1981, 190 (01) :61-92
[37]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[38]   SCATTERING THEORY AND 1-N EXPANSION IN THE CHIRAL GROSS-NEVEU MODEL [J].
KOBERLE, R ;
KURAK, V ;
SWIECA, JA .
PHYSICAL REVIEW D, 1979, 20 (04) :897-902
[39]   YANG-BAXTER EQUATION AND REPRESENTATION-THEORY .1. [J].
KULISH, PP ;
RESHETIKHIN, NY ;
SKLYANIN, EK .
LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (05) :393-403
[40]   NEW FACTORIZED S-MATRICES ASSOCIATED WITH SO(N) [J].
MACKAY, NJ .
NUCLEAR PHYSICS B, 1991, 356 (03) :729-749