Random quantum correlations and density operator distributions

被引:100
作者
Hall, MJW [1 ]
机构
[1] Australian Natl Univ, Dept Theoret Phys, Canberra, ACT 0200, Australia
关键词
entanglement; random correlations; Bures metric;
D O I
10.1016/S0375-9601(98)00190-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Randomly correlated ensembles of two quantum systems are investigated, including average entanglement entropies and probability distributions of Schmidt decomposition coefficients. Maximal correlation is guaranteed in the limit as one system becomes infinite dimensional. The reduced density operator distributions are compared with distributions induced via the Bures and Hilbert-Schmidt metrics. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 17 条
[1]   INFORMATION-THEORY, SQUEEZING, AND QUANTUM CORRELATIONS [J].
BARNETT, SM ;
PHOENIX, SJD .
PHYSICAL REVIEW A, 1991, 44 (01) :535-545
[2]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[3]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[4]   Geometry of quantum inference [J].
Braunstein, SL .
PHYSICS LETTERS A, 1996, 219 (3-4) :169-174
[6]   ENTANGLED QUANTUM-SYSTEMS AND THE SCHMIDT DECOMPOSITION [J].
EKERT, A ;
KNIGHT, PL .
AMERICAN JOURNAL OF PHYSICS, 1995, 63 (05) :415-423
[7]  
Hirota O., 1997, QUANTUM COMMUNICATIO
[8]   EXPLICIT COMPUTATION OF THE BURES DISTANCE FOR DENSITY-MATRICES [J].
HUBNER, M .
PHYSICS LETTERS A, 1992, 163 (04) :239-242
[9]   PRINCIPLES OF QUANTUM INFERENCE [J].
JONES, KRW .
ANNALS OF PHYSICS, 1991, 207 (01) :140-170
[10]  
Josza R., 1994, J MOD OPTIC, V41, P2315