Bayesian multiple comparisons using Dirichlet process priors

被引:55
作者
Gopalan, R [1 ]
Berry, DA
机构
[1] Data Infoworks, Sunnyvale, CA 94086 USA
[2] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
[3] Duke Univ, Ctr Comprehens Canc, Durham, NC 27708 USA
关键词
beta/binomial prior; concentration parameter; Gibbs sampling; normal/inverted gamma prior; posterior probabilities of hypotheses;
D O I
10.2307/2669856
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of multiple comparisons from a Bayesian viewpoint. The family of Dirichlet process priors is applied in the form of baseline prior/likelihood combinations to obtain posterior probabilities for various hypotheses of equality among population means. The baseline prior/likelihood combinations considered here are beta/binomial and normal/inverted gamma with equal variances on treatment means. The prior probabilities of the hypotheses depend directly on the concentration parameter of the Dirichlet process prior. Finding posterior distributions is analytically intractable; we use Gibbs sampling. The posterior probabilities of hypotheses of interest are easily obtained as a by-product in evaluating the marginal posterior distributions of the parameters. The proposed procedure is compared to Duncan's multiple range test and shown to be mon powerful under certain alternative hypotheses.
引用
收藏
页码:1130 / 1139
页数:10
相关论文
共 27 条
[1]   MIXTURES OF DIRICHLET PROCESSES WITH APPLICATIONS TO BAYESIAN NONPARAMETRIC PROBLEMS [J].
ANTONIAK, CE .
ANNALS OF STATISTICS, 1974, 2 (06) :1152-1174
[2]  
Berge C., 1971, PRINCIPLE COMBINATOR
[3]  
Berger JO., 1985, Statistical Decision Theory and Bayesian Analysis, V2, DOI DOI 10.1007/978-1-4757-4286-2
[4]  
Bernardo J.M., 2009, Bayesian Theory, V405
[5]   EMPIRICAL BAYES ESTIMATION OF A BINOMIAL PARAMETER VIA MIXTURES OF DIRICHLET PROCESSES [J].
BERRY, DA ;
CHRISTENSEN, R .
ANNALS OF STATISTICS, 1979, 7 (03) :558-568
[6]  
BERRY DA, 1988, BAYESIAN STAT, V3
[7]   A semiparametric Bayesian model for randomised block designs [J].
Bush, CA ;
MacEachern, SN .
BIOMETRIKA, 1996, 83 (02) :275-285
[8]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[9]   ESTIMATING NORMAL MEANS WITH A DIRICHLET PROCESS PRIOR [J].
ESCOBAR, MD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (425) :268-277
[10]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230