Generation of quantum logic operations from physical Hamiltonians

被引:25
作者
Zhang, J [1 ]
Whaley, KB
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1103/PhysRevA.71.052317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We provide a systematic analysis of the physical generation of single- and two-qubit quantum operations from Hamiltonians available in various quantum systems for scalable quantum information processing. We show that generation of single-qubit operations can be transformed into a steering problem on the Bloch sphere, which represents all R-z-equivalence classes of single-qubit operations, whereas the two-qubit problem can be generally transformed into a steering problem in a tetrahedron representing all the local-equivalence classes of two-qubit operations (the Weyl chamber). We use this approach to investigate several physical examples for the generation of two-qubit operations. The steering approach provides useful guidance for the realization of various quantum computation schemes.
引用
收藏
页数:13
相关论文
共 57 条
[1]   GEOMETRIC METHODS FOR NON-LINEAR OPTIMAL-CONTROL PROBLEMS [J].
BAILLIEUL, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1978, 25 (04) :519-548
[2]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[3]   Optimal simulation of two-qubit Hamiltonians using general local operations [J].
Bennett, CH ;
Cirac, JI ;
Leifer, MS ;
Leung, DW ;
Linden, N ;
Popescu, S ;
Vidal, G .
PHYSICAL REVIEW A, 2002, 66 (01) :123051-1230516
[4]  
Bransden B. H., 1989, INTRO QUANTUM MECH
[5]  
Bryson AE., 1975, Applied optimal control: optimization, estimation and control
[6]   Physical optimization of quantum error correction circuits [J].
Burkard, G ;
Loss, D ;
DiVincenzo, DP ;
Smolin, JA .
PHYSICAL REVIEW B, 1999, 60 (16) :11404-11416
[7]   Coupled quantum dots as quantum gates [J].
Burkard, G ;
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW B, 1999, 59 (03) :2070-2078
[8]   Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing [J].
Byrd, MS ;
Lidar, DA .
PHYSICAL REVIEW LETTERS, 2002, 89 (04)
[9]  
D'Alessandro D, 2004, AUTOMATICA, V40, P1997, DOI [10.1016/j.automatica.2004.06.006, 10.1016/j.automatica.2004.06.0]
[10]   The optimal control problem on SO (4) and its applications to quantum control [J].
D'Alessandro, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (01) :87-92