Electrochemical preparation and characterisation of LizMoS2-x nanotubes

被引:25
作者
Dominko, R [1 ]
Gaberscek, M
Arcon, D
Mrzel, A
Remskar, M
Mihailovic, D
Pejovnik, S
Jamnik, J
机构
[1] Natl Inst Chem, Ljubljana, Slovenia
[2] Jozef Stefan Inst, Ljubljana, Slovenia
[3] Fac Math & Phys, Ljubljana, Slovenia
[4] Fac Chem & Chem Technol, Ljubljana, Slovenia
关键词
lithium ion batteries; anode material; MoS2; nanotubes; polyaniline composites; electron spin resonance;
D O I
10.1016/S0013-4686(03)00384-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The recent synthesis of self-assembled single-wall MoS2-xIy (x approximate to 0 and y approximate to 1/3) NTs bundles has given a new material, which can reversibly exchange lithium in non-aqueous electrolytes. It has been found that a relatively large amount of lithium can be inserted into the MoS(2-x)Iy NTs bundles (up to 3 mol of Li per MoS2 mol). The amount of inserted lithium and, also, the reversibly extracted lithium, depends on the quality of MoS2-xIy NTs bundles and their prior treatment. Comparing their electrochemical properties with layered 2H-MoS2, one finds a significant increase in the amount of inserted lithium and a decrease by about 0.7 V in the potential at which lithium insertion takes place. Furthermore the decrease of electron spin resonance (ESR) signal of lithiated nMoS(2-x)I(y) NTs bundles exposed to the air is slower than the decrease of ESR signal of lithiated layered 2H-MoS2 crystals which suggests that lithiated MoS2-xIy NTs bundles are less air-sensitive than the lithiated layered 2H-MoS2 crystals. These differences are attributed to the particular one-dimensional topology of self-assembled MoS2-xIy NTs bundles. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3079 / 3084
页数:6
相关论文
共 19 条
  • [11] Shear and Young's moduli of MoS2 nanotube ropes
    Kis, A
    Mihailovic, D
    Remskar, M
    Mrzel, A
    Jesih, A
    Piwonski, I
    Kulik, AJ
    Benoît, W
    Forró, L
    [J]. ADVANCED MATERIALS, 2003, 15 (09) : 733 - 736
  • [12] Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries -: III.: Sn2Fe:SnFe3C active/inactive composites
    Mao, O
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (02) : 423 - 427
  • [13] Nanostructured materials for energy storage
    Nazar, LF
    Goward, G
    Leroux, F
    Duncan, M
    Huang, H
    Kerr, T
    Gaubicher, J
    [J]. INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, 2001, 3 (03): : 191 - 200
  • [14] Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes
    Niederberger, M
    Muhr, HJ
    Krumeich, F
    Bieri, F
    Günther, D
    Nesper, R
    [J]. CHEMISTRY OF MATERIALS, 2000, 12 (07) : 1995 - 2000
  • [15] POIZOT P, 2000, NATURE, V496, P407
  • [16] Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes
    Remskar, M
    Mrzel, A
    Skraba, Z
    Jesih, A
    Ceh, M
    Demsar, J
    Stadelmann, P
    Lévy, F
    Mihailovic, D
    [J]. SCIENCE, 2001, 292 (5516) : 479 - 481
  • [17] Mo cluster formation in the intercalation compound LiMoS2
    Rocquefelte, X
    Boucher, F
    Gressier, P
    Ouvrard, G
    Blaha, P
    Schwarz, K
    [J]. PHYSICAL REVIEW B, 2000, 62 (04) : 2397 - 2400
  • [18] Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties
    Shimoda, H
    Gao, B
    Tang, XP
    Kleinhammes, A
    Fleming, L
    Wu, Y
    Zhou, O
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (01) : 4 - 155024
  • [19] ELECTRICAL ENERGY-STORAGE AND INTERCALATION CHEMISTRY
    WHITTINGHAM, MS
    [J]. SCIENCE, 1976, 192 (4244) : 1126 - 1127