CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma

被引:612
作者
Coroller, Thibaud P. [1 ,3 ]
Grossmann, Patrick [1 ,3 ]
Hou, Ying [1 ]
Velazquez, Emmanuel Rios [1 ]
Leijenaar, Ralph T. H. [3 ]
Hermann, Gretchen [1 ]
Lambin, Philippe [3 ]
Haibe-Kains, Benjamin [4 ,5 ]
Mak, Raymond H. [1 ]
Aerts, Hugo J. W. L. [1 ,2 ,3 ]
机构
[1] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Radiat Oncol,Brigham & Womens Hosp, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Radiol,Brigham & Womens Hosp, Boston, MA 02115 USA
[3] Maastricht Univ, Dept Radiat Oncol MAASTRO, GROW Res Inst, NL-6200 MD Maastricht, Netherlands
[4] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[5] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
关键词
Radiomics; Lung adenocarcinoma; NSCLC; Quantitative imaging; Biomarkers; Distant metastasis; PHASE-III TRIAL; TUMOR HETEROGENEITY; TEXTURE ANALYSIS; FDG-PET; PROGNOSTIC-FACTOR; CANCER; RADIOTHERAPY; ONCOLOGY; SURVIVAL; VOLUME;
D O I
10.1016/j.radonc.2015.02.015
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: Radiomics provides opportunities to quantify the tumor phenotype non-invasively by applying a large number of quantitative imaging features. This study evaluates computed-tomography (CT) radiomic features for their capability to predict distant metastasis (DM) for lung adenocarcinoma patients. Material and methods: We included two datasets: 98 patients for discovery and 84 for validation. The phenotype of the primary tumor was quantified on pre-treatment CT-scans using 635 radiomic features. Univariate and multivariate analysis was performed to evaluate radiomics performance using the concordance index (CI). Results: Thirty-five radiomic features were found to be prognostic (CI > 0.60, FDR < 5%) for DM and twelve for survival. It is noteworthy that tumor volume was only moderately prognostic for DM (CI = 0.55, p-value = 2.77 x 10(-5)) in the discovery cohort. A radiomic-signature had strong power for predicting DM in the independent validation dataset (CI = 0.61, p-value = 1.79 x 10(-17)). Adding this radiomic-signature to a clinical model resulted in a significant improvement of predicting DM in the validation dataset (p-value = 1.56 x 10(-11)). Conclusions: Although only basic metrics are routinely quantified, this study shows that radiomic features capturing detailed information of the tumor phenotype can be used as a prognostic biomarker for clinically-relevant factors such as DM. Moreover, the radiomic-signature provided additional information to clinical data. (c) 2015 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 39 条
[1]   Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: A prospective validation [J].
Aerts, Hugo J. W. L. ;
Bussink, Johan ;
Oyen, Wim J. G. ;
van Elmpt, Wouter ;
Folgering, Annemieke M. ;
Emans, Daisy ;
Velders, Marije ;
Lambin, Philippe ;
De Ruysscher, Dirk .
LUNG CANCER, 2012, 75 (01) :73-76
[2]   Highly efficient carrier multiplication in PbS nanosheets [J].
Aerts, Michiel ;
Bielewicz, Thomas ;
Klinke, Christian ;
Grozema, Ferdinand C. ;
Houtepen, Arjan J. ;
Schins, Juleon M. ;
Siebbeles, Laurens D. A. .
NATURE COMMUNICATIONS, 2014, 5
[3]   Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial [J].
Albain, Kathy S. ;
Swann, R. Suzanne ;
Rusch, Valerie W. ;
Turrisi, Andrew T., III ;
Shepherd, Frances A. ;
Smith, Colum ;
Chen, Yuhchyau ;
Livingston, Robert B. ;
Feins, Richard H. ;
Gandara, David R. ;
Fry, Willard A. ;
Darling, Gail ;
Johnson, David H. ;
Green, Mark R. ;
Miller, Robert C. ;
Ley, Joanne ;
Sause, Willliam T. ;
Cox, James D. .
LANCET, 2009, 374 (9687) :379-386
[4]   TUMOR VOLUME IS A PROGNOSTIC FACTOR IN NON-SMALL-CELL LUNG CANCER TREATED WITH CHEMORADIOTHERAPY [J].
Alexander, Brian M. ;
Othus, Megan ;
Caglar, Hale B. ;
Allen, Aaron M. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 79 (05) :1381-1387
[5]  
[Anonymous], RMETA
[6]  
[Anonymous], INT J RAD ONCOL
[7]  
[Anonymous], RADIOLOGY
[8]  
[Anonymous], RADIOLOGY
[9]   Reproducibility and Prognosis of Quantitative Features Extracted from CT Images [J].
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Wang, Hua ;
Kumar, Virendra ;
Grove, Olya ;
Hawkins, Sam ;
Kim, Jongphil ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :72-87
[10]   The complex relationship between lung tumor volume and survival in patients with non-small cell lung cancer treated by definitive radiotherapy: A prospective, observational prognostic factor study of the Trans-Tasman Radiation Oncology Group (TROG 99.05) [J].
Ball, David L. ;
Fisher, Richard J. ;
Burmeister, Bryan H. ;
Poulsen, Michael G. ;
Graham, Peter H. ;
Penniment, Michael G. ;
Vinod, Shalini K. ;
Krawitz, Hedley E. ;
Joseph, David J. ;
Wheeler, Greg C. ;
McClure, Bev E. .
RADIOTHERAPY AND ONCOLOGY, 2013, 106 (03) :305-311