Overview of the QCDSP and QCDOC computers

被引:45
作者
Boyle, PA
Chen, D
Christ, NH
Clark, MA
Cohen, SD
Cristian, C
Dong, Z
Gara, A
Joó, B
Jung, C
Kim, C
Levkova, LA
Liao, X
Liu, G
Mawhinney, RD
Ohta, S
Petrov, K
Wettig, T
Yamaguchi, A
机构
[1] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Brookhaven Natl Lab, Upton, NY 11973 USA
[5] Indiana Univ, Bloomington, IN 47401 USA
[6] US Equity Derivat, Citigrp Quantitat Equity Trading, New York, NY 10013 USA
[7] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[8] UBS Investment Bank, Stamford, CT 06902 USA
[9] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[10] Gluon Capital LLC, New York, NY 10013 USA
[11] High Energy Accelerator Res Org, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan
关键词
D O I
10.1147/rd.492.0351
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The QCDSP and QCDOC computers are two generations of midtithousand-node multidimensional mesh-based computers designed to study quantum chromodynamics (QCD), the theory of the strong nuclear force. QCDSP (QCD on digital signal processors). a four-dimensional mesh machine, was completed in 1998; in that year, it won the Gordon Bell prize in the price/performance categorly. Two large installations - of 8,192 and 12,288 nodes, with a combined peak speed of one teraflops-have been in operation since. QCD-on-a-chip (QCDOC) utilizes a sixdimensional mesh and compute nodes fabricated with IBM system-on-a-chip technology. It offers a tenfold impropement in price/performace . Currently 100-node versions are operating, and there are plans to build three 12,288-node, 10-teraflops machines. In this paper, we describe the architecture of both the QCDSP and QCDOC machines, the operating systems employed, the user software environment, and the performance of our application-lattice QCD.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 11 条
[1]   Status of the apeNEXT project [J].
Ammendola, R ;
Bodin, F ;
Boucaud, P ;
Cabibbo, N ;
Di Carlo, F ;
De Pietri, R ;
Di Renzo, F ;
Errico, W ;
Fucci, A ;
Guagnelli, M ;
Kaldass, H ;
Lonardo, A ;
de Luca, S ;
Micheli, J ;
Morenas, V ;
Pene, O ;
Petronzio, R ;
Palombi, F ;
Pleiter, D ;
Paschedag, N ;
Rapuano, F ;
De Riso, P ;
Salamon, A ;
Salina, G ;
Sartori, L ;
Schifano, F ;
Simma, H ;
Tripiccione, R .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 :1038-1040
[2]   A 0.5 TERAFLOPS MACHINE OPTIMIZED FOR LATTICE QCD [J].
ARSENIN, I ;
CHEN, D ;
CHRIST, N ;
EDWARDS, R ;
GARA, A ;
HANSEN, S ;
KENNEDY, A ;
MAWHINNEY, R ;
PARSONS, J ;
SEXTON, J .
NUCLEAR PHYSICS B, 1994, :820-822
[3]  
BOYLE PA, 2003, P C COMP HIGH EN PHY, P1
[4]  
BOYLE PA, 2003, P 21 INT S LATT FIEL, P838
[5]   QCDOC: A 10-teraflops scale computer for lattice QCD [J].
Chen, D ;
Christ, NH ;
Cristian, C ;
Dong, Z ;
Gara, A ;
Garg, K ;
Joo, B ;
Kim, C ;
Levkova, L ;
Liao, X ;
Mawhinney, RD ;
Ohta, S ;
Wettig, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 :825-832
[6]  
Christ N. H., 1989, Nuclear Physics B, Proceedings Supplements, V9, P549, DOI 10.1016/0920-5632(89)90160-6
[7]   Recent development and perspectives of machines for lattice QCD [J].
Lippert, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 :88-101
[8]   The 1 Teraflops QCDSP computer [J].
Mawhinney, RD .
PARALLEL COMPUTING, 1999, 25 (10-11) :1281-1296
[9]  
PERRINE KA, 2002, P SPIE C VIS DAT AN, P196
[10]  
Tripiccione R., 1990, Nuclear Physics B, Proceedings Supplements, V17, P137, DOI 10.1016/0920-5632(90)90227-L