Distribution of DARPP-32 immunoreactive structures in the quail brain: anatomical relationship with dopamine and aromatase

被引:28
作者
Absil, P
Foidart, A
Hemmings, HC
Steinbusch, HWM
Ball, GF
Balthazart, J
机构
[1] Univ Liege, Ctr Res Cellular & Mol Neurobiol, Res Grp Behav Neuroendocrinol, B-4020 Liege, Belgium
[2] Cornell Univ, Dept Anesthesiol, New York, NY USA
[3] Maastricht Univ, Dept Psychiat, Maastricht, Netherlands
[4] Maastricht Univ, Div Neuropsychol, Maastricht, Netherlands
[5] Johns Hopkins Univ, Dept Psychol, Behav Neuroendocrinol Grp, Baltimore, MD 21218 USA
关键词
dopaminoceptive cells; tyrosine hydroxylase; estrogen synthase; aromatase activity; preoptic area; nucleus striae terminalis; dopamine;
D O I
10.1016/S0891-0618(00)00094-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We recently demonstrated that dopamine (DA) as well as different DA receptor agonists and antagonists are able to decrease within a few minutes the aromatase activity (AA) measured in vitro in homogenates or in explants of the quail preoptic area hypothalamus. In addition, DA also appears to regulate AA, in vivo presumably by modifying enzyme synthesis. The cellular mechanisms and the anatomical substrate that mediate these controls of AA by DA are poorly understood. Tyrosine hydroxylase-immunoreactive (TH-ir) fibers and punctate structures have been previously observed in close vicinity of aromatase-immunoreactive (ARO-ir) cells in the quail medial preoptic nucleus (POM) and bed nucleus striae terminalis (BST) but these fibers could reflect a noradrenergic innervation. We also do not know whether aromatase cells are dopaminoceptive. The main goal of the present study was therefore to bring more information on the anatomical relationships between aromatase expressing neurons and the dopaminergic system in the quail brain. The visualization by immunocytochemistry of DA and of the D1 receptor associated protein DARPP-32 was used to address these questions. DA-ir fibers were observed in the quail forebrain and overlapped extensively with nuclei that contain high densities of ARO-ir cells such as the POM and BST. This confirms that the previously reported TH-ir innervation of ARO-ir cells is, at least in part, of dopaminergic nature. DARPP-32-immunoreactive cells were found in periventricular position throughout the hypothalamus. DARPP-32-ir cells were also observed in telencephalic and mesencephalic areas (hyperstriatum accessorium, paleostriatum, nucleus intercollicularis, optic tectum). DARPP-32-ir fibers were widespread in tel-, di-, and mes-encephalic areas. The highest densities of immunoreactive fibers were detected in the lobus parolfactorius, paleostriatum augmentatum and substantia nigra/area ventralis of Tsai. In double-labeled sections, appositions between DARPP-32 fibers and ARO-ir cells were present in the dorsolateral POM and BST but DARPP-32 immunoreactivity was not detected in the ARO-ir perikarya (no colocalization). These data confirm the presence of a dopaminoceptive structures within the main cell clusters of ARO-ir cells in the quail brain but provide no evidence that these ARO-ir cells are themselves dopaminoceptive. Because DARPP-32 is not present in all types of cells expressing DA receptors, the presence of DA receptors that would not be associated with DARPP-32 in ARO-ir cells still remains to be investigated (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:23 / 39
页数:17
相关论文
共 81 条
[71]   D1 and D2 dopamine receptor messenger ribonucleic acid in brain and pituitary during the reproductive cycle of the turkey hen [J].
Schnell, SA ;
You, S ;
El Halawani, ME .
BIOLOGY OF REPRODUCTION, 1999, 60 (06) :1378-1383
[72]   THE MISMATCH PROBLEM IN RECEPTOR AUTORADIOGRAPHY AND THE COEXISTENCE OF MULTIPLE MESSENGERS [J].
SCHULTZBERG, M ;
HOKFELT, T .
TRENDS IN NEUROSCIENCES, 1986, 9 (03) :109-110
[73]   NEUROANATOMICAL DISTRIBUTION OF TESTOSTERONE-METABOLIZING ENZYMES IN THE JAPANESE-QUAIL [J].
SCHUMACHER, M ;
BALTHAZART, J .
BRAIN RESEARCH, 1987, 422 (01) :137-148
[74]   THE DISTRIBUTION OF NEUROTRANSMITTER-SPECIFIC CELLS AND FIBERS IN THE ANTEROVENTRAL PERIVENTRICULAR NUCLEUS - IMPLICATIONS FOR THE CONTROL OF GONADOTROPIN-SECRETION IN THE RAT [J].
SIMERLY, RB ;
SWANSON, LW .
BRAIN RESEARCH, 1987, 400 (01) :11-34
[75]   Expression of the CYP19 (aromatase) gene: An unusual case of alternative promoter usage [J].
Simpson, ER ;
Michael, MD ;
Agarwal, VR ;
Hinshelwood, MM ;
Bulun, SE ;
Zhao, Y .
FASEB JOURNAL, 1997, 11 (01) :29-36
[76]  
Steinbusch H W, 1988, Acta Histochem Suppl, V35, P86
[77]  
STEINBUSCH HWM, 1987, IBRO HDB SERIES, V10, P125
[78]   Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors [J].
Svenningsson, P ;
Lindskog, M ;
Ledent, C ;
Parmentier, M ;
Greengard, P ;
Fredholm, BB ;
Fisone, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1856-1860
[79]  
WALAAS SI, 1984, J NEUROSCI, V4, P84
[80]   STIMULATION OF AROMATASE-ACTIVITY IN THE FETAL-RAT GONADS BY CAMP AND FSH [J].
WENIGER, JP ;
ZEIS, A .
ACTA ENDOCRINOLOGICA, 1988, 119 (03) :381-385