Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change

被引:82
作者
House, Kurt Zenz [1 ]
House, Christopher H. [2 ]
Schrag, Daniel P. [1 ,3 ]
Aziz, Michael J. [3 ]
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
10.1021/es0701816
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We describe an approach to CO2 capture and storage from the atmosphere that involves enhancing the solubility of CO2 in the ocean by a process equivalent to the natural silicate weathering reaction. HCl is electrochemically removed from the ocean and neutralized through reaction with silicate rocks. The increase in ocean alkalinity resulting from the removal of HCl causes atmospheric CO2 to dissolve into the ocean where it will be stored primarily as HCO3- without further acidifying the ocean. On timescales of hundreds of years or longer, some of the additional alkalinity will likely lead to precipitation or enhanced preservation of CaCO3, resulting in the permanent storage of the associated carbon, and the return of an equal amount of carbon to the atmosphere. Whereas the natural silicate weathering process is effected primarily by carbonic acid, the engineered process accelerates the weathering kinetics to industrial rates by replacing this weak acid with HCl. In the thermodynamic limit-and with the appropriate silicate rocks-the overall reaction is spontaneous. A range of efficiency scenarios indicates that the process should require 100-400 kJ of work per mol of CO2 captured and stored for relevant timescales. The process can be powered from stranded energy sources too remote to be useful for the direct needs of population centers. It may also be useful on a regional scale for protection of coral reefs from further ocean acidification. Application of this technology may involve neutralizing the alkaline solution that is coproduced with HCl with CO2 from a point source or from the atmosphere prior to being returned to the ocean.
引用
收藏
页码:8464 / 8470
页数:7
相关论文
共 56 条
[1]   A HIGH-PERFORMANCE HYDROGEN/CHLORINE FUEL-CELL FOR SPACE POWER APPLICATIONS [J].
ANDERSON, EB ;
TAYLOR, EJ ;
WILEMSKI, G ;
GELB, A .
JOURNAL OF POWER SOURCES, 1994, 47 (03) :321-328
[2]  
[Anonymous], 1998, Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, DOI DOI 10.1201/9781482227833
[3]  
[Anonymous], 2005, IPCC SPECIAL REPORT
[4]   Fate of fossil fuel CO2 in geologic time -: art. no. C09S05 [J].
Archer, D .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2005, 110 (C9) :1-6
[5]   Anthropogenic emissions of trichloromethane (chloroform, CHCl3) and chlorodifluoromethane (HCFC-22):: Reactive Chlorine Emissions Inventory [J].
Aucott, ML ;
McCulloch, A ;
Graedel, TE ;
Kleiman, G ;
Midgley, P ;
Li, YF .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D7) :8405-8415
[6]   Carbon capture and storage from fossil fuels and biomass -: Costs and potential role in stabilizing the atmosphere [J].
Azar, Christian ;
Lindgren, Kristian ;
Larson, Eric ;
Moellersten, Kenneth .
CLIMATIC CHANGE, 2006, 74 (1-3) :47-79
[7]   Coplanar interdigitated band electrodes for electrosynthesis. Part 4: Application to sea water electrolysis [J].
Belmont, C ;
Ferrigno, R ;
Leclerc, O ;
Girault, HH .
ELECTROCHIMICA ACTA, 1998, 44 (04) :597-603
[8]   MEMBRANE CELLS FOR CHLOR-ALKALI ELECTROLYSIS [J].
BERGNER, D .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1982, 12 (06) :631-644
[9]  
BOMMARAJU TV, 2002, ELECTROCHEMISTRY ENC
[10]   Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications [J].
Caldeira, K ;
Rau, GH .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (02) :225-228