NADPH Oxidase 4 Promotes Endothelial Angiogenesis Through Endothelial Nitric Oxide Synthase Activation

被引:240
作者
Craige, Siobhan M. [1 ]
Chen, Kai [1 ]
Pei, Yongmei [1 ]
Li, Chunying [1 ]
Huang, Xiaoyun [1 ]
Chen, Christine [1 ]
Shibata, Rei
Sato, Kaori [2 ]
Walsh, Kenneth [2 ]
Keaney, John F., Jr. [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Med, Div Cardiovasc Med, Worcester, MA 01605 USA
[2] Boston Univ, Sch Med, Whitaker Cardiovasc Inst, Boston, MA 02118 USA
基金
美国国家卫生研究院;
关键词
angiogenesis; endothelium; eNOS; reactive oxygen species; NADPH oxidase 4; GROWTH-FACTOR; NAD(P)H OXIDASE; NOX4; PROTEIN; EXPRESSION; ROS; PHOSPHORYLATION; INSULIN; LOCALIZATION; SUPEROXIDE;
D O I
10.1161/CIRCULATIONAHA.111.030775
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Reactive oxygen species serve signaling functions in the vasculature, and hypoxia has been associated with increased reactive oxygen species production. NADPH oxidase 4 (Nox4) is a reactive oxygen species-producing enzyme that is highly expressed in the endothelium, yet its specific role is unknown. We sought to determine the role of Nox4 in the endothelial response to hypoxia. Methods and Results-Hypoxia induced Nox4 expression both in vitro and in vivo and overexpression of Nox4 was sufficient to promote endothelial proliferation, migration, and tube formation. To determine the in vivo relevance of our observations, we generated transgenic mice with endothelial-specific Nox4 overexpression using the vascular endothelial cadherin promoter (VECad-Nox4 mice). In vivo, the VECad-Nox4 mice had accelerated recovery from hindlimb ischemia and enhanced aortic capillary sprouting. Because endothelial nitric oxide synthase (eNOS) is involved in endothelial angiogenic responses and eNOS is activated by reactive oxygen species, we probed the effect of Nox4 on eNOS. In cultured endothelial cells overexpressing Nox4, we observed a significant increase in eNOS protein expression and activity. To causally address the link between eNOS and Nox4, we crossed our transgenic Nox4 mice with eNOS(-/-) mice. Aortas from these mice did not demonstrate enhanced aortic sprouting, and VECad-Nox4 mice on the eNOS(-/-) background did not demonstrate enhanced recovery from hindlimb ischemia. Conclusions-Collectively, we demonstrate that augmented endothelial Nox4 expression promotes angiogenesis and recovery from hypoxia in an eNOS-dependent manner. (Circulation. 2011; 124: 731-740.)
引用
收藏
页码:731 / U193
页数:14
相关论文
共 50 条
[1]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[2]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[3]   Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice [J].
Bhandarkar, Sulochana S. ;
Jaconi, Marisa ;
Fried, Levi E. ;
Bonner, Michael Y. ;
Lefkove, Benjamin ;
Govindarajan, Baskaran ;
Perry, Betsy N. ;
Parhar, Ravi ;
Mackelfresh, Jamie ;
Sohn, Allie ;
Stouffs, Michael ;
Knaus, Ulla ;
Yancopoulos, George ;
Reiss, Yvonne ;
Benest, Andrew V. ;
Augustin, Hellmut G. ;
Arbiser, Jack L. .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (08) :2359-2365
[4]   Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide [J].
Cai, H ;
Li, ZM ;
Davis, ME ;
Kanner, W ;
Harrison, DG ;
Dudley, SC .
MOLECULAR PHARMACOLOGY, 2003, 63 (02) :325-331
[5]   Regulation of ROS signal transduction by NADPH oxidase 4 localization [J].
Chen, Kai ;
Kirber, Michael T. ;
Xiao, Hui ;
Yang, Yu ;
Keaney, John F., Jr. .
JOURNAL OF CELL BIOLOGY, 2008, 181 (07) :1129-1139
[6]  
Chen K, 2009, ANTIOXID REDOX SIGN, V11, P2467, DOI [10.1089/ars.2009.2594, 10.1089/ARS.2009.2594]
[7]   AMP-activated protein kinase phosphorylation of endothelial NO synthase [J].
Chen, ZP ;
Mitchelhill, KI ;
Michell, BJ ;
Stapleton, D ;
Rodriguez-Crespo, I ;
Witters, LA ;
Power, DA ;
de Montellano, PRO ;
Kemp, BE .
FEBS LETTERS, 1999, 443 (03) :285-289
[8]   Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR [J].
Colavitti, R ;
Pani, G ;
Bedogni, B ;
Anzevino, R ;
Borrello, S ;
Waltenberger, J ;
Galeotti, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3101-3108
[9]  
Couffinhal T, 1998, AM J PATHOL, V152, P1667
[10]   Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production [J].
Dikalov, Sergey I. ;
Dikalova, Anna E. ;
Bikineyeva, Alfiya T. ;
Schmidt, Harald H. H. W. ;
Harrison, David G. ;
Griendling, Kathy K. .
FREE RADICAL BIOLOGY AND MEDICINE, 2008, 45 (09) :1340-1351