Finite-size scaling of the error threshold transition in finite populations

被引:40
作者
Campos, PRA [1 ]
Fontanari, JF [1 ]
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 01期
关键词
D O I
10.1088/0305-4470/32/1/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The error threshold transition in a stochastic (i.e. finite population) version of the quasispecies model of molecular evolution is studied using finite-size scaling. For the single-sharp-peak replication landscape, the deterministic model exhibits a first-order transition at Q = Q(c) = 1/a, where Q is the probability of exact replication of a molecule of length L --> infinity, and a is the selective advantage of the master string. For sufficiently large population size, N, we show that in the critical region the characteristic time for the vanishing of the master strings from the population is described very well by the scaling assumption tau = N(1/2)f(a)[(Q - Q(c))N-1/2], where f(a) is an a-dependent scaling function.
引用
收藏
页码:L1 / L7
页数:7
相关论文
共 19 条
[1]   Error threshold in finite populations [J].
Alves, D ;
Fontanari, JF .
PHYSICAL REVIEW E, 1998, 57 (06) :7008-7013
[3]   Stochastic model of evolving populations [J].
Bonnaz, D ;
Koch, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :417-429
[4]   Finite-size scaling of the quasispecies model [J].
Campos, PRA ;
Fontanari, JF .
PHYSICAL REVIEW E, 1998, 58 (02) :2664-2667
[5]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[6]  
EBELING W, 1977, ANN PHYS-LEIPZIG, V34, P81, DOI 10.1002/andp.19774890202
[7]   SELFORGANIZATION OF MATTER AND EVOLUTION OF BIOLOGICAL MACROMOLECULES [J].
EIGEN, M .
NATURWISSENSCHAFTEN, 1971, 58 (10) :465-+
[8]  
EIGEN M, 1989, ADV CHEM PHYS, V75, P149
[9]  
ENGELNMULLGES G, 1996, NUMERICAL ALGORITHMS
[10]   Exact solution of the quasispecies model in a sharply peaked fitness landscape [J].
Galluccio, S .
PHYSICAL REVIEW E, 1997, 56 (04) :4526-4539