Microarray analysis reveals similarities and variations in genetic programs controlling pollination/fertilization and stress responses in rice (Oryza sativa L.)

被引:55
作者
Lan, LF
Li, MN
Lai, Y
Xu, WY
Kong, ZS
Ying, K
Han, B
Xue, YB [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Mol & Dev Biol Lab, Beijing 100080, Peoples R China
[3] Natl Ctr Plant Gene Res, Beijing 100080, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai 200233, Peoples R China
[5] Natl Ctr Gene Res, Shanghai 200233, Peoples R China
[6] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
cDNA microarray; pollination and fertilization; Real-Time PCR; rice; stress response;
D O I
10.1007/s11103-005-3958-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previously, we identified 253 cDNAs that are regulated by pollination/fertilization in rice by using a 10K cDNA microarray. In addition, many of them also appeared to be involved in drought and wounding responses. To investigate this relationship, we obtained their expression profiles after dehydration and wounding treatments in this study. Venn diagram analysis indicated that 53.8% (136/253) and 21% (57/253) of the pollination/fertilization-related genes are indeed regulated by dehydration and wounding, respectively, and nearly half of the genes expressed preferentially in unpollinated pistils (UP) are responsive to dehydration. These results indicated that an extensive gene set is shared among these responses, suggesting that the genetic programs regulating them are likely related. Among them, the genetic network of water stress control may be a key player in pollination and fertilization. Additionally, 39.5% (100/253) cDNAs that are related to pollination/fertilization appear not to be regulated by the stress treatments (dehydration and wounding), suggesting that the existence of additional genetic networks are involved in pollination/fertilization. Furthermore, comparative analysis of the expression profiles of the 253 cDNAs under 18 different conditions (various tissues, treatments and developmental status) revealed that the genetic networks regulating photosynthesis, starch metabolisms, GA- and defense-responses are involved in pollination and fertilization. Taken together, these results provided some clues to elucidate the molecular mechanisms of pollination and fertilization in rice.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 37 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   GABA in plants:: just a metabolite? [J].
Bouché, N ;
Fromm, H .
TRENDS IN PLANT SCIENCE, 2004, 9 (03) :110-115
[3]   The importance of light intensity for pollen tube growth and embryo survival in wheat x maize crosses [J].
Campbell, AW ;
Griffin, WB ;
Burritt, DJ ;
Conner, AJ .
ANNALS OF BOTANY, 2001, 87 (04) :517-522
[4]   Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration [J].
Chen, FQ ;
Foolad, MR .
PLANT MOLECULAR BIOLOGY, 1997, 35 (06) :821-831
[5]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[6]   A network of rice genes associated with stress response and seed development [J].
Cooper, B ;
Clarke, JD ;
Budworth, P ;
Kreps, J ;
Hutchison, D ;
Park, S ;
Guimil, S ;
Dunn, M ;
Luginbühl, P ;
Ellero, C ;
Goff, SA ;
Glazebrook, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (08) :4945-4950
[7]   The Brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis [J].
Dixit, R ;
Rizzo, C ;
Nasrallah, M ;
Nasrallah, J .
PLANT MOLECULAR BIOLOGY, 2001, 45 (01) :51-62
[8]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[9]   Signaling and the modulation of pollen tube growth [J].
Franklin-Tong, VE .
PLANT CELL, 1999, 11 (04) :727-738
[10]   Correlation between protein and mRNA abundance in yeast [J].
Gygi, SP ;
Rochon, Y ;
Franza, BR ;
Aebersold, R .
MOLECULAR AND CELLULAR BIOLOGY, 1999, 19 (03) :1720-1730