Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry

被引:111
作者
Strittmatter, EF [1 ]
Ferguson, PL [1 ]
Tang, KQ [1 ]
Smith, RD [1 ]
机构
[1] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA
关键词
D O I
10.1016/S1044-0305(03)00146-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We describe the application of capillary liquid chromatography (LC) time-of-flight (TOF) mass spectrometric instrumentation for the rapid characterization of microbial proteomes. Previously (Lipton et al., Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11049) the peptides from a series of growth conditions of Deinococcus radiodurans have been characterized using capillary LC MS/MS and accurate mass measurements which are captured as an accurate mass and time (AMT) tag database. Using this AMT tag database, detected peptides can be assigned using measurements obtained on a TOF due to the additional use of elution time data as a constraint. When peptide matches are obtained using AMT tags (i.e., using both constraints) unique matches of a mass spectral peak occurs 88% of the time. Not only are AMT tag matches unique in most cases, the coverage of the proteome is high; similar to3500 unique peptide AMT tags are found on average per capillary LC run. From the results of the AMT tag database search, similar to900 ORFs detected using LC-TOFMS, with similar to500 ORFs covered by at least two AMT tags. These results indicate that AMT database searches with modest mass and elution time criteria can provide proteomic information for approximately one thousand proteins in a single run of <3 h. The advantage of this method over using MS/MS based techniques is the large number of identifications that occur in a single experiment as well as the basis for improved quantitation. For MS/MS experiments, the number of peptide identifications is severely restricted because of the time required to dissociate the peptides individually. These results demonstrate the utility of the AMT tag approach using capillary LC-TOF MS instruments, and also show that AMT tags developed using other instrumentation can be effectively utilized.
引用
收藏
页码:980 / 991
页数:12
相关论文
共 32 条
  • [21] 2-2
  • [22] PETRITIS K, IN PRESS ANAL CHEM
  • [23] High-throughput proteomics using high efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry
    Shen, YF
    Tolic, N
    Zhao, R
    Pasa-Tolic, L
    Li, LJ
    Berger, SJ
    Harkewicz, R
    Anderson, GA
    Belov, ME
    Smith, RD
    [J]. ANALYTICAL CHEMISTRY, 2001, 73 (13) : 3011 - 3021
  • [24] IMPROVED ELECTROSPRAY IONIZATION INTERFACE FOR CAPILLARY ZONE ELECTROPHORESIS - MASS-SPECTROMETRY
    SMITH, RD
    BARINAGA, CJ
    UDSETH, HR
    [J]. ANALYTICAL CHEMISTRY, 1988, 60 (18) : 1948 - 1952
  • [25] Smith RD, 2002, PROTEOMICS, V2, P513, DOI 10.1002/1615-9861(200205)2:5<513::AID-PROT513>3.0.CO
  • [26] 2-W
  • [27] Smith Richard D., 2002, OMICS A Journal of Integrative Biology, V6, P61, DOI 10.1089/15362310252780843
  • [28] STRITTMATTER E, IN PRESS ANAL CHEM
  • [29] Separations combined with mass spectrometry
    Tomer, KB
    [J]. CHEMICAL REVIEWS, 2001, 101 (02) : 297 - 328
  • [30] Large-scale analysis of the yeast proteome by multidimensional protein identification technology
    Washburn, MP
    Wolters, D
    Yates, JR
    [J]. NATURE BIOTECHNOLOGY, 2001, 19 (03) : 242 - 247