Modern statistics for spatial point processes

被引:188
作者
Moller, Jesper [1 ]
Waagepetersen, Rasmus P. [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, Aalborg, Denmark
关键词
Bayesian inference; conditional intensity; Cox process; Gibbs point process; Markov chain Monte Carlo; maximum likelihood; perfect simulation; Poisson process; residuals; simulation free estimation; summary statistics;
D O I
10.1111/j.1467-9469.2007.00569.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs and Cox process models, diagnostic tools and model checking, Markov chain Monte Carlo algorithms, computational methods for likelihood-based inference, and quick non-likelihood approaches to inference.
引用
收藏
页码:643 / 684
页数:42
相关论文
共 136 条
[41]  
Diggle P, 2003, STAT ANAL SPATIAL PO
[42]  
Diggle P.J., 1983, Statistical analysis of spatial point patterns
[43]  
DIGGLE PJ, 2005, 78 JOHNS HOPK U DEP
[44]  
Fiksel T., 1984, Elektronische Informationsverarbeitung und Kybernetik (EIK), V20, P270
[45]   CLUSTERING ESTIMATES FOR SPATIAL POINT-DISTRIBUTIONS WITH UNSTABLE POTENTIALS [J].
GATES, DJ ;
WESTCOTT, M .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1986, 38 (01) :123-135
[46]  
Gelman A, 1998, STAT SCI, V13, P163
[47]  
Gelman A, 1996, STAT SINICA, V6, P733
[48]   CANONICAL AND GRAND CANONICAL GIBBS STATES FOR CONTINUUM SYSTEMS [J].
GEORGII, HO .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 48 (01) :31-51
[49]  
Geyer C, 1999, MG STAT PRO, V80, P79
[50]   ANNEALING MARKOV-CHAIN MONTE-CARLO WITH APPLICATIONS TO ANCESTRAL INFERENCE [J].
GEYER, CJ ;
THOMPSON, EA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (431) :909-920