Atomic-level control of the thermoelectric properties in polytypoid nanowires

被引:61
作者
Andrews, Sean C. [1 ,2 ]
Fardy, Melissa A. [1 ,2 ]
Moore, Michael C. [1 ,2 ]
Aloni, Shaul [2 ]
Zhang, Minjuan [3 ]
Radmilovic, Velimir [2 ,4 ]
Yang, Peidong [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Toyota Motor Engn & Mfg N Amer TEMA Inc, Toyota Res Inst N Amer, Mat Res Dept, Ann Arbor, MI 48105 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
关键词
HOMOLOGOUS COMPOUNDS; THERMAL-CONDUCTIVITY; OXIDE SEMICONDUCTOR; MODULATED STRUCTURE; DOPED ZNO; TRANSPORT; IN2O3(ZNO)(M); ENHANCEMENT; PERFORMANCE; FIGURE;
D O I
10.1039/c0sc00537a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermoelectric materials have generated interest as a means of increasing the efficiency of power generation through the scavenging of waste heat. Materials containing nanometer-sized structural and compositional features can exhibit enhanced thermoelectric performance due to the decoupling of certain electrical and thermal properties, but the extent to which these features can be controlled is often limited. Here we report a simple synthesis of M2O3(ZnO)(n) (M = In, Ga, Fe) nanowires with controllable polytypoid structures, where the nanostructured features are tuned by adjusting the amount of metal precursor. After the introduction of nanometer-scale features (individual atomic layers and alloying), thermal and electrical measurements on single In2-xGaxO3(ZnO)(n) nanowires reveal a simultaneous improvement in all contributing factors to the thermoelectric figure of merit, indicating successful modification of the nanowire transport properties.
引用
收藏
页码:706 / 714
页数:9
相关论文
共 54 条
[1]   Polar semiconductor ZnO under inplane tensile strain [J].
Alahmed, Zeyad ;
Fu, Huaxiang .
PHYSICAL REVIEW B, 2008, 77 (04)
[2]   Aspects of thin-film superlattice thermoelectric materials, devices, and applications [J].
Böttner, H ;
Chen, G ;
Venkatasubramanian, R .
MRS BULLETIN, 2006, 31 (03) :211-217
[3]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[4]  
BROSER I, 1982, PHYS 2 6 1 7 COMPUND, V17
[5]   Engineering nanoscale phonon and photon transport for direct energy conversion [J].
Chen, G ;
Narayanaswamy, A ;
Dames, C .
SUPERLATTICES AND MICROSTRUCTURES, 2004, 35 (3-6) :161-172
[6]   Ultralow thermal conductivity in disordered, layered WSe2 crystals [J].
Chiritescu, Catalin ;
Cahill, David G. ;
Nguyen, Ngoc ;
Johnson, David ;
Bodapati, Arun ;
Keblinski, Pawel ;
Zschack, Paul .
SCIENCE, 2007, 315 (5810) :351-353
[7]   Rules of structure formation for the homologous InMO3(ZnO)n compounds [J].
Da Silva, Juarez L. F. ;
Yan, Yanfa ;
Wei, Su-Huai .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[8]   Doping and planar defects in the formation of single-crystal ZnO nanorings [J].
Ding, Y ;
Kong, XY ;
Wang, ZL .
PHYSICAL REVIEW B, 2004, 70 (23) :1-7
[9]   Atomistic Simulations of Heat Transport in Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[10]   Diffusion of zinc vacancies and interstitials in zinc oxide [J].
Erhart, Paul ;
Albe, Karsten .
APPLIED PHYSICS LETTERS, 2006, 88 (20)