Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries

被引:170
作者
Banerjee, Abhik [1 ]
Tang, Hanmei [1 ]
Wang, Xuefeng [1 ]
Cheng, Ju-Hsiang [1 ]
Han Nguyen [1 ]
Zhang, Minghao [1 ]
Tang, Darren H. S. [1 ]
Wynn, Thomas A. [1 ]
Wu, Erik A. [1 ]
Doux, Jean-Marie [1 ]
Wu, Tianpin [2 ]
Ma, Lu [2 ]
Sterbinsky, George E. [2 ]
D'Souza, Macwin Savio [1 ]
Ong, Shyue Ping [1 ,3 ]
Meng, Ying Shirley [1 ,3 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA
[3] Univ Calif San Diego, SPEC, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
solid electrolyte; interface; interfacial engineering; Li6PS5Cl (LPSCI); LiNi0.85Co0.1Al0.05O2 (NCA); solid-state battery; Density functional theory (DFT) calculations; ab initio molecular dynamics (AIMD); LITHIUM BATTERIES; ELECTROLYTES; LICOO2; STABILITY;
D O I
10.1021/acsami.9b13955
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against sulfide solid electrolytes. While protective oxide coating layers such as LiNbO3 (LNO) have been proposed, its precise working mechanisms are still not fully understood. Existing literature attributes reductions in interfacial impedance growth to the coating's ability to prevent interfacial reactions. However, its true nature is more complex, with cathode interfacial reactions and electrolyte electrochemical decomposition occurring simultaneously, making it difficult to decouple each effect. Herein, we utilized various advanced characterization tools and first-principles calculations to probe the interfacial phenomenon between solid electrolyte Li6PS5Cl (LPSCl) and high-voltage cathode LiNi0.85Co0.1Al0.05O2 (NCA). We segregated the effects of spontaneous reaction between LPSCl and NCA at the interface and quantified the intrinsic electrochemical decomposition of LPSCl during cell cycling. Both experimental and computational results demonstrated improved thermodynamic stability between NCA and LPSCl after incorporation of the LNO coating. Additionally, we revealed the in situ passivation effect of LPSCl electrochemical decomposition. When combined, both these phenomena occurring at the first charge cycle result in a stabilized interface, enabling long cyclability of all-solid-state batteries.
引用
收藏
页码:43138 / 43145
页数:8
相关论文
共 28 条
[11]   Characterization of Thin-Film Lithium Batteries with Stable Thin-Film Li3PO4 Solid Electrolytes Fabricated by ArF Excimer Laser Deposition [J].
Kuwata, Naoaki ;
Iwagami, Naoya ;
Tanji, Yoshinari ;
Matsuda, Yasutaka ;
Kawamura, Junichi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A521-A527
[12]   In situ Raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-ion battery composite cathode [J].
Lei, JL ;
McLarnon, F ;
Kostecki, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (02) :952-957
[13]   Lithium battery chemistries enabled by solid-state electrolytes [J].
Manthiram, Arumugam ;
Yu, Xingwen ;
Wang, Shaofei .
NATURE REVIEWS MATERIALS, 2017, 2 (04)
[14]   LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries [J].
Ohta, Narumi ;
Takada, Kazunori ;
Sakaguchi, Isao ;
Zhang, Lianqi ;
Ma, Renzhi ;
Fukuda, Katsutoshi ;
Osada, Minoru ;
Sasaki, Takayoshi .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (07) :1486-1490
[15]   Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification [J].
Ohta, Narumi ;
Takada, Kazunori ;
Zhang, Lianqi ;
Ma, Renzhi ;
Osada, Minoru ;
Sasaki, Takayoshi .
ADVANCED MATERIALS, 2006, 18 (17) :2226-+
[16]   The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles [J].
Ong, Shyue Ping ;
Cholia, Shreyas ;
Jain, Anubhav ;
Brafman, Miriam ;
Gunter, Dan ;
Ceder, Gerbrand ;
Persson, Kristin A. .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 97 :209-215
[17]   Intefacial Observation between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy [J].
Sakuda, Atsushi ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :949-956
[18]   Oxygen substitution effects in Li10GeP2S12 solid electrolyte [J].
Sun, Yulong ;
Suzuki, Kota ;
Hara, Kosuke ;
Hori, Satoshi ;
Yano, Taka-aki ;
Hara, Masahiko ;
Hirayama, Masaaki ;
Kanno, Ryoji .
JOURNAL OF POWER SOURCES, 2016, 324 :798-803
[19]   RAMAN-SCATTERING OF NIS2 [J].
SUZUKI, T ;
UCHINOKURA, K ;
SEKINE, T ;
MATSUURA, E .
SOLID STATE COMMUNICATIONS, 1977, 23 (11) :847-852
[20]   Interfacial modification for high-power solid-state lithium batteries [J].
Takada, Kazunon ;
Ohta, Narumi ;
Zhang, Lianqi ;
Fukuda, Katsutoshi ;
Sakaguchi, Isao ;
Ma, Renzhi ;
Osada, Minoru ;
Sasaki, Takayoshi .
SOLID STATE IONICS, 2008, 179 (27-32) :1333-1337