Simple model to study soliton wave propagation in periodic-loaded nonlinear transmission lines

被引:18
作者
Martín, F [1 ]
Oriols, X [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Elect Engn, Bellaterra, Barcelona, Spain
关键词
D O I
10.1063/1.1369619
中图分类号
O59 [应用物理学];
学科分类号
摘要
A model to study soliton propagation characteristics in nonlinear transmission lines (NLTLs) periodically loaded with voltage dependent capacitances is presented. This is based on the LC ladder equivalent network of the NLTL, and can be applied to structures where the Korteweg-de Vries approach does not hold. Specifically, the model allows to numerically obtain soliton waveforms under arbitrary capacitance non linearity. To demonstrate its validity, it has been applied to structures loaded with symmetric capacitances, similar to those exhibited by actual heterostructure barrier varactors. The model can be of help to understand harmonic generation in monolithic NLTL-based frequency multipliers. (C) 2001 American Institute of Physics.
引用
收藏
页码:2802 / 2804
页数:3
相关论文
共 14 条
[1]  
Carman E., 1992, IEEE Microwave and Guided Wave Letters, V2, P253, DOI 10.1109/75.136523
[2]   28-39 GHz Distributed Harmonic Generation on a Soliton Nonlinear Transmission Line [J].
Carman, Eric ;
Giboney, Kirk ;
Case, Michael ;
Kamegawa, Masayuki ;
Yu, Ruai ;
Abe, Kathryn ;
Rodwell, M.J.W. ;
Franklin, Jeff .
IEEE Microwave and Guided Wave Letters, 1991, 1 (02) :28-31
[3]   High capacitance ratio with GaAs/InGaAs/AlAs heterostructure quantum well-barrier varactors [J].
Duez, V ;
Melique, X ;
Vanbesien, O ;
Mounaix, P ;
Mollot, F ;
Lippens, D .
ELECTRONICS LETTERS, 1998, 34 (19) :1860-1861
[4]   Solitons and diffusive modes in the noiseless Burgers equation: Stability analysis [J].
Fogedby, HC .
PHYSICAL REVIEW E, 1998, 57 (02) :2331-2337
[5]   THEORETICAL AND EXPERIMENTAL STUDIES OF LATTICE SOLITONS IN NONLINEAR LUMPED NETWORKS [J].
HIROTA, R ;
SUZUKI, K .
PROCEEDINGS OF THE IEEE, 1973, 61 (10) :1483-1491
[6]  
Lheurette E., 1999, P EUR MICR C MUN GER
[7]  
Remoissenet M., 1999, Waves Called Solitons
[8]   STRONG LUMPED CIRCUIT SOLITONS [J].
ROSENBLUTH, MN ;
WALTZ, RE .
JOURNAL OF APPLIED PHYSICS, 1989, 65 (09) :3698-3705
[9]   SOLITON - NEW CONCEPT IN APPLIED SCIENCE [J].
SCOTT, AC ;
CHU, FYF ;
MCLAUGHLIN, DW .
PROCEEDINGS OF THE IEEE, 1973, 61 (10) :1443-1483
[10]  
Taylor J.R., 1992, OPTICAL SOLITONS THE