Active retinal tracker for clinical optical coherence tomography systems

被引:39
作者
Hammer, DX
Ferguson, RD
Magill, JC
Paunescu, LA
Beaton, S
Ishikawa, H
Wollstein, G
Schuman, JS
机构
[1] Phys Sci Inc, Andover, MA 01810 USA
[2] Tufts Univ New England Med Ctr, New England Eye Ctr, Boston, MA 02111 USA
关键词
retinal tracker; image stabilization; optical coherence tomography; glaucoma; retina; low-coherence imaging;
D O I
10.1117/1.1896967
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An active, hardware-based retinal tracker is integrated with a clinical optical coherence tomography (OCT) system to investigate the effects of stabilization on acquisition of high-resolution retinal sections. The prototype retinal tracker locks onto common fundus features, detects transverse eye motion via changes in feature reflectance, and positions the OCT diagnostic beam to fixed coordinates on the retina with mirrors driven by a feedback control loop. The system is tested in a full clinical protocol on subjects with normal and glaucomatous eyes. Experimental analysis software is developed to coalign and coadd multiple funclus and OCT images and to extract quantitative information on the location of structures in the images. Tracking is highly accurate and reproducible on all but one subject, resulting in the ability to scan the same retinal location continually over long periods of time. The results show qualitative improvement in 97% of coadded OCT scans and a reduction in the variance of the position of the optic disc cup edge to less than 1 pixel (< 60 mu m). The tracking system can be easily configured for use in research on ultra-high-resolution OCT systems for advanced image modalities. For example, tracking will enable very high density 3-D scans of the retina, which are susceptible to eye motion artifacts even for new high-speed systems. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:11
相关论文
共 14 条
[1]  
BEATON S, 2004, P ANN M ASS RES VIS
[2]  
Bowd C, 2001, INVEST OPHTH VIS SCI, V42, P1993
[3]   Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography [J].
de Boer, JF ;
Cense, B ;
Park, BH ;
Pierce, MC ;
Tearney, GJ ;
Bouma, BE .
OPTICS LETTERS, 2003, 28 (21) :2067-2069
[4]  
Ferguson R. D., 1999, U. S. patent, Patent No. [5(943), 115, 5943115]
[5]  
Ferguson R. D., 1998, U.S. patent, Patent No. [5(767), 941, 5767941]
[6]   Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes [J].
Guedes, V ;
Schuman, JS ;
Hertzmark, E ;
Wollstein, G ;
Correnti, A ;
Mancini, R ;
Lederer, D ;
Voskanian, S ;
Velazquez, L ;
Pakter, HM ;
Pedut-Kloizman, T ;
Fujimoto, JG ;
Mattox, C .
OPHTHALMOLOGY, 2003, 110 (01) :177-189
[7]   Tracking scanning laser ophthalmoscope (TSLO) [J].
Hammer, DX ;
Ferguson, RD ;
Magill, JC ;
White, MA ;
Elsner, AE ;
Webb, RH .
OPHTHALMIC TECHNOLOGIES XIII, 2003, 4951 :208-217
[8]   Compact scanning laser ophthalmoscope with high-speed retinal tracker [J].
Hammer, DX ;
Ferguson, RD ;
Magill, JC ;
White, MA ;
Elsner, AE ;
Webb, RH .
APPLIED OPTICS, 2003, 42 (22) :4621-4632
[9]   Image stabilization for scanning laser ophthalmoscopy [J].
Hammer, DX ;
Ferguson, RD ;
Magill, JC ;
White, MA ;
Elsner, AE ;
Webb, RH .
OPTICS EXPRESS, 2002, 10 (26) :1542-1549
[10]   Optical coherence tomographic findings of macular holes and retinal detachment after vitrectomy in highly myopic eyes [J].
Ikuno, Y ;
Sayanagi, K ;
Oshima, T ;
Gomi, F ;
Kusaka, S ;
Kamei, M ;
Ohji, M ;
Fujikado, T ;
Tano, Y .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2003, 136 (03) :477-481