Mathematical analysis of a stefan problem with Dirichlet-Signorini boundary conditions appearing in polythermic ice sheet modeling

被引:1
作者
Calvo, N
Durany, J
Vázquez, C
机构
[1] Univ Vigo, Dept Matemat Aplicada, ETSI Telecomun, Vigo 36280, Spain
[2] Univ A Coruna, Dept Matemat, Fac Informat, La Coruna 15071, Spain
关键词
D O I
10.1006/jmaa.2001.7560
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a Stefan problem from theoretical glaciology with Dirichlet-Signorini boundary conditions is analyzed. The existence of a weak solution for the nonlinear evolutive model is shown by using an implicit time discretization, an enthalpy regularization procedure, and a Galerkin-type method. The main goal has been to adapt the previous techniques to the specific boundary conditions of the problem. (C) 2001 Academic Press.
引用
收藏
页码:577 / 600
页数:24
相关论文
共 12 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
[Anonymous], THESIS U SANTIAGO CO
[3]  
BERMUDEZ A, 1981, INRIA RAPPORT, V34, P43
[4]   POLYTHERMAL CONDITIONS IN ARCTIC GLACIERS [J].
BLATTER, H ;
HUTTER, K .
JOURNAL OF GLACIOLOGY, 1991, 37 (126) :261-269
[5]  
Brezis H., 1983, ANAL FONCTIONELLE TH
[6]   Numerical approach of temperature distribution in a free boundary model for polythermal ice sheets [J].
Calvo, N ;
Durany, J ;
Vázquez, C .
NUMERISCHE MATHEMATIK, 1999, 83 (04) :557-580
[7]   Numerical computation of ice sheet profiles with free boundary models [J].
Calvo, N ;
Durany, J ;
Vázquez, C .
APPLIED NUMERICAL MATHEMATICS, 2000, 35 (02) :111-128
[8]   MODELING ICE-SHEET DYNAMICS [J].
FOWLER, AC .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1992, 63 (1-4) :29-65
[9]  
Grange O., 1972, Journal of Functional Analysis, V11, P77, DOI [10.1016/0022-1236(72)90080-8, DOI 10.1016/0022-1236(72)90080-8]