Mathematical analysis of a stefan problem with Dirichlet-Signorini boundary conditions appearing in polythermic ice sheet modeling

被引:1
作者
Calvo, N
Durany, J
Vázquez, C
机构
[1] Univ Vigo, Dept Matemat Aplicada, ETSI Telecomun, Vigo 36280, Spain
[2] Univ A Coruna, Dept Matemat, Fac Informat, La Coruna 15071, Spain
关键词
D O I
10.1006/jmaa.2001.7560
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a Stefan problem from theoretical glaciology with Dirichlet-Signorini boundary conditions is analyzed. The existence of a weak solution for the nonlinear evolutive model is shown by using an implicit time discretization, an enthalpy regularization procedure, and a Galerkin-type method. The main goal has been to adapt the previous techniques to the specific boundary conditions of the problem. (C) 2001 Academic Press.
引用
收藏
页码:577 / 600
页数:24
相关论文
共 12 条
[11]  
Lions Jacques-Louis, 1969, QUELQUES METHODES RE
[12]   MONOTONE OPERATORS AND PROXIMAL POINT ALGORITHM [J].
ROCKAFELLAR, RT .
SIAM JOURNAL ON CONTROL, 1976, 14 (05) :877-898