Anomalous dynamics of cell migration

被引:255
作者
Dieterich, Peter [1 ]
Klages, Rainer [2 ]
Preuss, Roland [3 ]
Schwab, Albrecht [4 ]
机构
[1] Med Fak Carl gustav Carus, Inst Physiol, D-01307 Dresden, Germany
[2] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[3] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
[4] Inst Physiol II, D-48149 Munster, Germany
基金
英国工程与自然科学研究理事会;
关键词
data analysis; fractional dynamics; non-Brownian motion;
D O I
10.1073/pnas.0707603105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell movement-for example, during embryogenesis or tumor metastasis-is a complex dynamical process resulting from an intricate interplay of multiple components of the cellular migration machinery. At first sight, the paths of migrating cells resemble those of thermally driven Brownian particles. However, cell migration is an active biological process putting a characterization in terms of normal Brownian motion into question. By analyzing the trajectories of wild-type and mutated epithelial (transformed Madin-Darby canine kidney) cells, we show experimentally that anomalous dynamics characterizes cell migration. A superdiffusive increase of the mean squared displacement, non-Gaussian spatial probability distributions, and power-law decays of the velocity autocorrelations is the basis for this interpretation. Almost all results can be explained with a fractional Klein-Kramers equation allowing the quantitative classification of cell migration by a few parameters. Thereby, it discloses the influence and relative importance of individual components of the cellular migration apparatus to the behavior of the cell as a whole.
引用
收藏
页码:459 / 463
页数:5
相关论文
共 26 条
[1]   Cytoplasm dynamics and cell motion: two-phase flow models [J].
Alt, W ;
Dembo, M .
MATHEMATICAL BIOSCIENCES, 1999, 156 (1-2) :207-228
[2]  
[Anonymous], 1955, HIGHER TRANSCENDENTA
[3]  
[Anonymous], 2012, Probability Theory: The Logic Of Science
[4]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[5]   Intermittent search strategies:: When losing time becomes efficient [J].
Benichou, O. ;
Coppey, M. ;
Moreau, M. ;
Voituriez, R. .
EUROPHYSICS LETTERS, 2006, 75 (02) :349-354
[6]   Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1 [J].
Denker, SP ;
Barber, DL .
JOURNAL OF CELL BIOLOGY, 2002, 159 (06) :1087-1096
[7]   The Brownian movement and stochastic equations [J].
Doob, JL .
ANNALS OF MATHEMATICS, 1942, 43 :351-369
[8]   Bayesian inference in physics: case studies [J].
Dose, V .
REPORTS ON PROGRESS IN PHYSICS, 2003, 66 (09) :1421-1461
[9]  
DUNN GA, 1987, J CELL SCI, P81
[10]   THE FUNDAMENTAL MOTOR OF THE HUMAN NEUTROPHIL IS NOT RANDOM - EVIDENCE FOR LOCAL NON-MARKOV MOVEMENT IN NEUTROPHILS [J].
HARTMAN, RS ;
LAU, K ;
CHOU, W ;
COATES, TD .
BIOPHYSICAL JOURNAL, 1994, 67 (06) :2535-2545