Synthesis, Optical and Structural Properties, and Charge Carrier Dynamics of Cu-Doped ZnSe Nanocrystals

被引:105
作者
Gul, Sheraz [1 ]
Cooper, Jason K. [1 ]
Corrado, Carley [1 ]
Vollbrecht, Brian [2 ]
Bridges, Frank [2 ]
Guo, Jinghua [3 ]
Zhang, Jin Z. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
关键词
CDSE NANOCRYSTALS; QUANTUM DOTS; II-VI; LUMINESCENCE-CENTERS; ODMR INVESTIGATIONS; SIZE DEPENDENCE; SEMICONDUCTOR; COPPER; ULTRAFAST; SURFACE;
D O I
10.1021/jp2047272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stable and luminescent Cu-doped ZnSe nanocrystals (NCs) were synthesized in organic solvents with octadecylamine (ODA) as the capping ligand and characterized using a combination of optical and structural characterization techniques. Successful doping was achieved by adding Cu during the growth phase of the NCs when their size was similar to 4 nm. The appearance of red-shifted, intense photoluminescence (PL) peak with doping indicates the incorporation of Cu in the NCs, and stability of dopant emission infers the internal doping of NCs. Extended X-ray absorption fine structure (EXAFS) studies revealed that Cu is surrounded by four neighbors in the lattice but is very close to the NC surface and gets oxidized when NCs are precipitated from the solution. For the undoped sample, time-resolved PL studies using time-correlated single photon counting (TCSPC) reveal the luminescence decay lifetimes of about 1.1, 12, and 60 ns that we attribute to near-bandedge, shallow trap (ST) state, and deep trap (DT) state emissions, respectively. In addition to these decay components, the Cu-doped sample was found to have a long-lived component with a lifetime of 630 ns. Luminescence decay lifetimes of near-bandedge and ST state emissions were slightly shortened by doping (1 and 10 ns, respectively), suggesting that the Cu dopant competes with these states in trapping the charge carriers from the conduction band (CB) or near-bandedge states. However, the presence of Cu was found to increase the lifetime of DT states from 60 to 100 ns probably due to a decrease in coupling of electron and hole states involved in this emission upon Cu doping. Synthesis of such stable, doped samples along with a better understanding of charge carrier dynamics is significant for emerging optical applications of these NCs.
引用
收藏
页码:20864 / 20875
页数:12
相关论文
共 88 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[3]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[4]  
[Anonymous], 1996, Semiconductors - Basic Data, V2nd revis
[5]   Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent [J].
Battaglia, D ;
Peng, XG .
NANO LETTERS, 2002, 2 (09) :1027-1030
[6]  
Becker W., 2005, ADV TIME CORRELATED
[7]   OPTICAL-PROPERTIES OF MANGANESE-DOPED NANOCRYSTALS OF ZNS [J].
BHARGAVA, RN ;
GALLAGHER, D ;
HONG, X ;
NURMIKKO, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :416-419
[8]   Luminescence of nanocrystalline ZnS:CU2+ [J].
Bol, AA ;
Ferwerda, J ;
Bergwerff, JA ;
Meijerink, A .
JOURNAL OF LUMINESCENCE, 2002, 99 (04) :325-334
[9]  
Booth C.H., 2005, R-Space X-ray Absorption Package
[10]   LUMINESCENT CENTERS IN ZNS-CU-CL PHOSPHORS [J].
BOWERS, R ;
MELAMED, NT .
PHYSICAL REVIEW, 1955, 99 (06) :1781-1787