Relationship between enzyme specificity and the backbone dynamics of free and inhibited α-lytic protease

被引:28
作者
Davis, JH
Agard, DA
机构
[1] Univ Calif San Francisco, Howard Hughes Med Inst, Grad Grp Biophys, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
D O I
10.1021/bi972963p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To better understand the structural basis for the observed patterns in substrate specificity, the backbone dynamics of alpha-lytic protease have been investigated using N-15 relaxation measurements. The enzyme was inhibited with the peptide boronic acid N-tert-butyloxycarbonyl-Ala-Pro-boro Val [Kettner, C. A., et al. (1988) Biochemistry 27, 7682], which mimics interactions occurring in the tetrahedral transition state or nearby intermediates, and the dynamics of the unbound and inhibited enzyme were compared. Arrayed 2-D NMR spectra were acquired to measure T-1, T-2, and steady-state {H-1}-N-15 NOE of >95% of the backbone amides in both protein samples. The overall rotational correlation time tau(c) was found to be 8.1 ns. Values of the spectral density function J(omega) at omega = 0, omega(N), and similar to omega(H) were derived from the relaxation results using reduced spectral density mapping [Ishima, R., & Nagayama, K. (1995) Biochemistry 34, 3162]. The resultant spectral densities were interpreted to indicate regions of fast motion (nanosecond to picosecond) and of intermediate chemical exchange (millisecond to microsecond). The protein has 13 regions with increased motion on the fast time scale; these generally fall on exterior turns and loops and most correlate with regions of higher crystallographic B-factors. Several stretches of backbone undergo intermediate chemical exchange, indicating motion or other processes that cause temporal chemical shift changes. A comparison of spectral densities for both the free and inhibited enzymes revealed that inhibitor binding preferentially stabilizes regions undergoing chemical exchange (which predominate around the active site) and only minimally affect regions of rapid motion. Slow motions, suggestive of backbone plasticity, are observed in most of the binding pocket residues. This may point to a mechanism for the observed broad specificity of the enzyme. The significance of the observed dynamics for substrate binding and specificity is discussed.
引用
收藏
页码:7696 / 7707
页数:12
相关论文
共 50 条
[1]   EFFECTS OF ION-BINDING ON THE BACKBONE DYNAMICS OF CALBINDIN-D9K DETERMINED BY N-15 NMR RELAXATION [J].
AKKE, M ;
SKELTON, NJ ;
KORDEL, J ;
PALMER, AG ;
CHAZIN, WJ .
BIOCHEMISTRY, 1993, 32 (37) :9832-9844
[2]   N-15 NMR-SPECTROSCOPY OF THE CATALYTIC-TRIAD HISTIDINE OF A SERINE PROTEASE IN PEPTIDE BORONIC ACID INHIBITOR COMPLEXES [J].
BACHOVCHIN, WW ;
WONG, WYL ;
FARRJONES, S ;
SHENVI, AB ;
KETTNER, CA .
BIOCHEMISTRY, 1988, 27 (20) :7689-7697
[3]   A PROTEIN-FOLDING REACTION UNDER KINETIC CONTROL [J].
BAKER, D ;
SOHL, JL ;
AGARD, DA .
NATURE, 1992, 356 (6366) :263-265
[4]   STRUCTURAL AND FUNCTIONAL-ASPECTS OF DOMAIN MOTIONS IN PROTEINS [J].
BENNETT, WS ;
HUBER, R .
CRC CRITICAL REVIEWS IN BIOCHEMISTRY, 1984, 15 (04) :291-384
[5]   SERINE PROTEASE MECHANISM - STRUCTURE OF AN INHIBITORY COMPLEX OF ALPHA-LYTIC PROTEASE AND A TIGHTLY BOUND PEPTIDE BORONIC ACID [J].
BONE, R ;
SHENVI, AB ;
KETTNER, CA ;
AGARD, DA .
BIOCHEMISTRY, 1987, 26 (24) :7609-7614
[6]   STRUCTURAL-ANALYSIS OF SPECIFICITY - ALPHA-LYTIC PROTEASE COMPLEXES WITH ANALOGS OF REACTION INTERMEDIATES [J].
BONE, R ;
FRANK, D ;
KETTNER, CA ;
AGARD, DA .
BIOCHEMISTRY, 1989, 28 (19) :7600-7609
[7]   CRYSTAL-STRUCTURES OF ALPHA-LYTIC PROTEASE COMPLEXES WITH IRREVERSIBLY BOUND PHOSPHONATE ESTERS [J].
BONE, R ;
SAMPSON, NS ;
BARTLETT, PA ;
AGARD, DA .
BIOCHEMISTRY, 1991, 30 (08) :2263-2272
[8]   STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS [J].
BONE, R ;
FUJISHIGE, A ;
KETTNER, CA ;
AGARD, DA .
BIOCHEMISTRY, 1991, 30 (43) :10388-10398
[9]   ANALYSIS OF THE BACKBONE DYNAMICS OF INTERLEUKIN-1-BETA USING 2-DIMENSIONAL INVERSE DETECTED HETERONUCLEAR N-15-H-1 NMR-SPECTROSCOPY [J].
CLORE, GM ;
DRISCOLL, PC ;
WINGFIELD, PT ;
GRONENBORN, AM .
BIOCHEMISTRY, 1990, 29 (32) :7387-7401
[10]   DEVIATIONS FROM THE SIMPLE 2-PARAMETER MODEL-FREE APPROACH TO THE INTERPRETATION OF N-15 NUCLEAR MAGNETIC-RELAXATION OF PROTEINS [J].
CLORE, GM ;
SZABO, A ;
BAX, A ;
KAY, LE ;
DRISCOLL, PC ;
GRONENBORN, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (12) :4989-4991