Novel specificities emerge by stepwise duplication of functional modules

被引:68
作者
Pereira-Leal, JB [1 ]
Teichmann, SA [1 ]
机构
[1] MRC, Mol Biol Lab, Struct Studies Div, Cambridge CB2 2QH, England
关键词
D O I
10.1101/gr.3102105
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A functional module can be defined as a spatially or chemically isolated set of functionally associated components that accomplishes a discrete biological process. Modularity is a key attribute of cellular systems, but the mechanisms that underlie the evolution of functional modules are largely unknown. Duplication of modules has been shown to be an efficient mechanism for the generation of functional innovation in the field of artificial intelligence, but has not been studied in biological networks. Therefore, we ask whether module duplication occurs in cellular networks. We developed a generic framework for the analysis of module duplication, and use it in a large-scale analysis of Saccharomyces cerevisiae protein complexes. Protein complexes are well defined, experimentally derived, functional modules. We observe that at least 6%-20% of the protein complexes have strong similarity to other complexes; thus a considerable fraction has evolved by duplication. Our results indicate that many complexes evolved by step-wise partial duplications. We show that duplicated complexes retain the same overall function, but have different binding specificities and regulation, revealing that duplication of these modules is associated with functional specialization.
引用
收藏
页码:552 / 559
页数:8
相关论文
共 51 条
[1]   Biological networks: The tinkerer as an engineer [J].
Alon, U .
SCIENCE, 2003, 301 (5641) :1866-1867
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[4]   Adaptins - The final recount [J].
Boehm, M ;
Bonifacino, JS .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (10) :2907-2920
[5]   A Sm-like protein complex that participates in mRNA degradation [J].
Bouveret, E ;
Rigaut, G ;
Shevchenko, A ;
Wilm, M ;
Séraphin, B .
EMBO JOURNAL, 2000, 19 (07) :1661-1671
[6]   Duplication of modules facilitates the evolution of functional specialization [J].
Calabretta, R ;
Nolfi, S ;
Parisi, D ;
Wagner, GP .
ARTIFICIAL LIFE, 2000, 6 (01) :69-84
[7]  
Calabretta R, 1998, FROM ANIM ANIMAT, P497
[8]   Protein prenyltransferases [J].
Casey, PJ ;
Seabra, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (10) :5289-5292
[9]   Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms [J].
Christie, KR ;
Weng, S ;
Balakrishnan, R ;
Costanzo, MC ;
Dolinski, K ;
Dwight, SS ;
Engel, SR ;
Feierbach, B ;
Fisk, DG ;
Hirschman, JE ;
Hong, EL ;
Issel-Tarver, L ;
Nash, R ;
Sethuraman, A ;
Starr, B ;
Theesfeld, CL ;
Andrada, R ;
Binkley, G ;
Dong, Q ;
Lane, C ;
Schroeder, M ;
Botstein, D ;
Cherry, JM .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D311-D314
[10]   Asymmetric sequence divergence of duplicate genes [J].
Conant, GC ;
Wagner, A .
GENOME RESEARCH, 2003, 13 (09) :2052-2058