BAGEL2: mining for bacteriocins in genomic data

被引:128
作者
de Jong, Anne [1 ]
van Heel, Auke J. [1 ]
Kok, Jan [1 ]
Kuipers, Oscar P. [1 ,2 ]
机构
[1] Univ Groningen, Dept Mol Genet, Groningen Biomol Sci & Biotechnol Inst, NL-9750 AA Haren, Netherlands
[2] Kluyver Ctr Genom Ind Fermentat, Delft, Netherlands
关键词
GRAM-POSITIVE BACTERIA; LANTIBIOTICS; TOOL; GENES;
D O I
10.1093/nar/gkq365
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mining bacterial genomes for bacteriocins is a challenging task due to the substantial structure and sequence diversity, and generally small sizes, of these antimicrobial peptides. Major progress in the research of antimicrobial peptides and the ever-increasing quantities of genomic data, varying from (un)finished genomes to meta-genomic data, led us to develop the significantly improved genome mining software BAGEL2, as a follow-up of our previous BAGEL software. BAGEL2 identifies putative bacteriocins on the basis of conserved domains, physical properties and the presence of biosynthesis, transport and immunity genes in their genomic context. The software supports parameter-free, class-specific mining and has high-throughput capabilities. Besides building an expert validated bacteriocin database, we describe the development of novel Hidden Markov Models (HMMs) and the interpretation of combinations of HMMs via simple decision rules for prediction of bacteriocin (sub-)classes. Furthermore, the genetic context is automatically annotated based on ( combinations of) PFAM domains and databases of known context genes. The scoring system was fine-tuned using expert knowledge on data derived from screening all bacterial genomes currently available at the NCBI. BAGEL2 is freely accessible at http://bagel2.molgenrug.nl.
引用
收藏
页码:W647 / W651
页数:5
相关论文
共 20 条
  • [1] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [2] Bailey T L, 1994, Proc Int Conf Intell Syst Mol Biol, V2, P28
  • [3] Combining evidence using p-values: application to sequence homology searches
    Bailey, TL
    Gribskov, M
    [J]. BIOINFORMATICS, 1998, 14 (01) : 48 - 54
  • [4] Identification of a Novel Two-Peptide Lantibiotic, Lichenicidin, following Rational Genome Mining for LanM Proteins
    Begley, Maire
    Cotter, Paul D.
    Hill, Colin
    Ross, R. Paul
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (17) : 5451 - 5460
  • [5] Lantibiotics: Mode of Action, Biosynthesis and Bioengineering
    Bierbaum, G.
    Sahl, H. -G.
    [J]. CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2009, 10 (01) : 2 - 18
  • [6] Bacteriocins: Developing innate immunity for food
    Cotter, PD
    Hill, C
    Ross, RP
    [J]. NATURE REVIEWS MICROBIOLOGY, 2005, 3 (10) : 777 - 788
  • [7] BAGEL: a web-based bacteriocin genome mining tool
    de Jong, Anne
    van Hijum, Sacha A. F. T.
    Bijlsma, Jetta J. E.
    Kok, Jan
    Kuipers, Oscar P.
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 : W273 - W279
  • [8] Identifying bacterial genes and endosymbiont DNA with Glimmer
    Delcher, Arthur L.
    Bratke, Kirsten A.
    Powers, Edwin C.
    Salzberg, Steven L.
    [J]. BIOINFORMATICS, 2007, 23 (06) : 673 - 679
  • [9] The continuing story of class IIa bacteriocins
    Drider, Djamel
    Fimland, Gunnar
    Hechard, Yann
    McMullen, Lynn M.
    Prevost, Herve
    [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2006, 70 (02) : 564 - +
  • [10] The biology of lantibiotics from the lacticin 481 group is coming of age
    Dufour, Alain
    Hindre, Thomas
    Haras, Dominique
    Le Pennec, Jean-Paul
    [J]. FEMS MICROBIOLOGY REVIEWS, 2007, 31 (02) : 134 - 167