Quantizing Regge calculus

被引:15
作者
Immirzi, G [1 ]
机构
[1] IST NAZL FIS NUCL, I-06100 PERUGIA, ITALY
关键词
D O I
10.1088/0264-9381/13/9/006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A discretized version of canonical gravity in (3 + 1) dimensions introduced in a previous paper is further developed, introducing the Liouville form and the Poisson brackets, and studying them in detail in an explicit parametrization that shows the nature of the variables when the second class constraints are imposed. It is then shown that, even leaving aside the difficult question of imposing the first class constraints on the states, it is impossible to quantize the model directly using complex variables and leaving the second class constraints to fix the metric of the quantum Hilbert, because one cannot find a metric which makes the area variables Hermitean.
引用
收藏
页码:2385 / 2393
页数:9
相关论文
共 17 条
[11]   VOLUME OPERATOR IN DISCRETIZED QUANTUM-GRAVITY [J].
LOLL, R .
PHYSICAL REVIEW LETTERS, 1995, 75 (17) :3048-3051
[12]   NONPERTURBATIVE SOLUTIONS FOR LATTICE QUANTUM-GRAVITY [J].
LOLL, R .
NUCLEAR PHYSICS B, 1995, 444 (03) :619-639
[13]   3-PLUS-ONE FORMULATION OF REGGE CALCULUS [J].
PIRAN, T ;
WILLIAMS, RM .
PHYSICAL REVIEW D, 1986, 33 (06) :1622-1633
[14]   GENERAL RELATIVITY WITHOUT COORDINATES [J].
REGGE, T .
NUOVO CIMENTO, 1961, 19 (03) :558-571
[15]   A LATTICE APPROACH TO SPINORIAL QUANTUM-GRAVITY [J].
RENTELN, P ;
SMOLIN, L .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (03) :275-294
[16]   DISCRETENESS OF AREA AND VOLUME IN QUANTUM-GRAVITY [J].
ROVELLI, C ;
SMOLIN, L .
NUCLEAR PHYSICS B, 1995, 442 (03) :593-619
[17]  
THOOFT G, 1993, CLASSICAL QUANT GRAV, V10, P1023, DOI 10.1088/0264-9381/10/5/019