Estrogens have been implicated to be complete carcinogens in breast and gynecologic tissues. Possible mechanisms may include differential metabolism with subsequent formation of reactive oxygen species and/or a receptor-mediated pathway, which may also involve indirect modulation of intracellular redox state. Estrogen-mediated oxidative DNA damage in mammary gland epithelia includes the induction of 8-oxo-2'-deoxyguanosine, both in vitro and in vivo, thereby suggesting a role for oxidative stress in the initiation and/or progression of breast neoplasia. In order to study this phenomenon, we have treated estrogen receptor alpha (ER-alpha)-positive MCF-7 cells and ER-alpha-negative MDA-MB-231 cells with 10 nM 17beta-estradiol (E-2), while measuring changes in antioxidant status and sensitivity to DNA damage by peroxide. Treatment of MCF-7 cells with E-2 resulted in a marked decrease in the ability for these cells to metabolize peroxide, which paralleled a decrease in catalase activity and total glutathione levels. These observations also correlated with an increased sensitivity to peroxide-induced DNA damage. The estrogen-induced effects were all opposed by the anti-estrogen tamoxifen. In addition, the estrogen-mediated down regulation of peroxide metabolism, catalase activity, and sensitivity to DNA damage were not observed in the MDA-MB-231 cell line. Treatment of MCF-7 cells with E-2 also resulted in increased glutathione peroxidase, superoxide dismutases (I) and (II) and glucose-6-phosphate dehydrogenase activities. Therefore, in this breast cancer model antioxidant status is modulated through the actions of the ER. The data may explain some of the estrogen-induced pro-oxidant effects previously reported in vivo. In addition, this is the first report indicating that E-2 is capable of inducing an increase in sensitivity to oxidative DNA damage through an ER-mediated mechanism.