Thermophysical and biological responses of gold nanoparticle laser heating

被引:464
作者
Qin, Zhenpeng [1 ]
Bischof, John C. [1 ,2 ,3 ]
机构
[1] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Mech & Biomed Engn, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Urol, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
SIZED METAL PARTICLES; IN-VIVO; PHOTOTHERMAL THERAPY; CANCER-CELLS; SELECTIVE NANOPHOTOTHERMOLYSIS; LOCAL HYPERTHERMIA; OPTICAL-PROPERTIES; CONTRAST AGENTS; THERMAL THERAPY; SURFACE;
D O I
10.1039/c1cs15184c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A compelling vision in nanomedicine is the use of self directed nanoparticles that can accumulate in areas of disease to perform designed functions, such as molecular delivery or destruction, endosomal release of genes or siRNA, and selective cell or tumor destruction with nano to macroscale spatiotemporal control and precision. These functions are increasingly achieved by gold nanoparticles (GNPs, such as sphere, shell or rod) that can be activated with a laser "switch". A defining aspect of this "switch" is GNP absorption of laser light and the ensuing heat generation and temperature change that can be confined or propagated through multiple scales from the nanoparticle surface up through bulk biological cells and tissues. In this critical review, we discuss the fundamental mechanisms of laser GNP heat generation, the measurement and modelling of the ensuing thermal response, and a number of the evolving biological applications dependent on this new technology (181 references).
引用
收藏
页码:1191 / 1217
页数:27
相关论文
共 180 条
[1]   Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography [J].
Adler, Desmond C. ;
Huang, Shu-Wei ;
Huber, Robert ;
Fujimoto, James G. .
OPTICS EXPRESS, 2008, 16 (07) :4376-4393
[2]   SELECTIVE PHOTOTHERMOLYSIS - PRECISE MICROSURGERY BY SELECTIVE ABSORPTION OF PULSED RADIATION [J].
ANDERSON, RR ;
PARRISH, JA .
SCIENCE, 1983, 220 (4596) :524-527
[3]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[4]  
Baish J. W., 2006, BIOMEDICAL ENG HDB, V3, P6
[5]   An Efficient Method Based on the Photothermal Effect for the Release of Molecules from Metal Nanoparticle Surfaces [J].
Bakhtiari, Amir Bahman Samsam ;
Hsiao, Dennis ;
Jin, Guoxia ;
Gates, Byron D. ;
Branda, Neil R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (23) :4166-4169
[6]   Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers [J].
Bendix, Poul M. ;
Nader, S. ;
Reihani, S. ;
Oddershede, Lene B. .
ACS NANO, 2010, 4 (04) :2256-2262
[7]   Observation of intrinsic size effects in the optical response of individual gold nanoparticles [J].
Berciaud, S ;
Cognet, L ;
Tamarat, P ;
Lounis, B .
NANO LETTERS, 2005, 5 (03) :515-518
[8]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[9]   Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells [J].
Bhowmick, S ;
Swanlund, DJ ;
Bischof, JC .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2000, 122 (01) :51-59
[10]   Determination of the critical point of gold [J].
Boboridis, K ;
Pottlacher, G ;
Jäger, H .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1999, 20 (04) :1289-1297