Thermophysical and biological responses of gold nanoparticle laser heating

被引:464
作者
Qin, Zhenpeng [1 ]
Bischof, John C. [1 ,2 ,3 ]
机构
[1] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Mech & Biomed Engn, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Urol, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
SIZED METAL PARTICLES; IN-VIVO; PHOTOTHERMAL THERAPY; CANCER-CELLS; SELECTIVE NANOPHOTOTHERMOLYSIS; LOCAL HYPERTHERMIA; OPTICAL-PROPERTIES; CONTRAST AGENTS; THERMAL THERAPY; SURFACE;
D O I
10.1039/c1cs15184c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A compelling vision in nanomedicine is the use of self directed nanoparticles that can accumulate in areas of disease to perform designed functions, such as molecular delivery or destruction, endosomal release of genes or siRNA, and selective cell or tumor destruction with nano to macroscale spatiotemporal control and precision. These functions are increasingly achieved by gold nanoparticles (GNPs, such as sphere, shell or rod) that can be activated with a laser "switch". A defining aspect of this "switch" is GNP absorption of laser light and the ensuing heat generation and temperature change that can be confined or propagated through multiple scales from the nanoparticle surface up through bulk biological cells and tissues. In this critical review, we discuss the fundamental mechanisms of laser GNP heat generation, the measurement and modelling of the ensuing thermal response, and a number of the evolving biological applications dependent on this new technology (181 references).
引用
收藏
页码:1191 / 1217
页数:27
相关论文
共 180 条
[21]   Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells [J].
Chithrani, BD ;
Ghazani, AA ;
Chan, WCW .
NANO LETTERS, 2006, 6 (04) :662-668
[22]  
Cho EC, 2011, NAT NANOTECHNOL, V6, P385, DOI [10.1038/NNANO.2011.58, 10.1038/nnano.2011.58]
[23]   The Role of Surface Functionality on Acute Cytotoxicity, ROS Generation and DNA Damage by Cationic Gold Nanoparticles [J].
Chompoosor, Apiwat ;
Saha, Krishnendu ;
Ghosh, Partha S. ;
Macarthy, Dylan J. ;
Miranda, Oscar R. ;
Zhu, Zheng-Jiang ;
Arcaro, Kathleen F. ;
Rotello, Vincent M. .
SMALL, 2010, 6 (20) :2246-2249
[24]   Strategies for the intracellular delivery of nanoparticles [J].
Chou, Leo Y. T. ;
Ming, Kevin ;
Chan, Warren C. W. .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (01) :233-245
[25]   Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy [J].
Clarke, Matthew L. ;
Chou, Shin Grace ;
Hwang, Jeeseong .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (11) :1743-1748
[26]   Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications [J].
Cole, Joseph R. ;
Mirin, Nikolay A. ;
Knight, Mark W. ;
Goodrich, Glenn P. ;
Halas, Naomi J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (28) :12090-12094
[27]   PROBE TECHNIQUE FOR DETERMINING THERMAL-CONDUCTIVITY OF TISSUE [J].
COOPER, TE ;
TREZEK, GJ .
JOURNAL OF HEAT TRANSFER, 1972, 94 (02) :133-&
[28]   A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas [J].
Csaki, Andrea ;
Garwe, Frank ;
Steinbruck, Andrea ;
Maubach, Gunter ;
Festag, Grit ;
Weise, Anja ;
Riemann, Iris ;
Koenig, Karsten ;
Fritzsche, Wolfgang .
NANO LETTERS, 2007, 7 (02) :247-253
[29]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[30]   Nanoparticles for Thermal Cancer Therapy [J].
Day, Emily S. ;
Morton, Jennifer G. ;
West, Jennifer L. .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (07)