Three-qubit pure-state canonical forms

被引:125
作者
Acín, A
Andrianov, A
Jané, E
Tarrach, R
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[2] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 35期
关键词
D O I
10.1088/0305-4470/34/35/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we analyse the canonical forms into which any pure three-qubit state can be cast. The minimal forms, i.e. the ones with the minimal number of product states built from local bases, are also presented and lead to a complete classification of pure three-qubit states. This classification is related to the values of the polynomial invariants under local unitary transformations by a one-to-one correspondence.
引用
收藏
页码:6725 / 6739
页数:15
相关论文
共 41 条
[11]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[12]  
COFFMAN V, 1999, QUANTPH9907047
[13]   Distillation of Greenberger-Horne-Zeilinger states by selective information manipulation [J].
Cohen, O ;
Brun, TA .
PHYSICAL REVIEW LETTERS, 2000, 84 (25) :5908-5911
[14]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[15]  
DUR W, 2000, QUANTPH005115
[16]   ENTANGLED QUANTUM-SYSTEMS AND THE SCHMIDT DECOMPOSITION [J].
EKERT, A ;
KNIGHT, PL .
AMERICAN JOURNAL OF PHYSICS, 1995, 63 (05) :415-423
[17]  
Gelfand I. M., 1994, Mathematics Theory & Applications, DOI DOI 10.1007/978-0-8176-4771-1
[18]   Computing local invariants of quantum-bit systems [J].
Grassl, M ;
Rotteler, M ;
Beth, T .
PHYSICAL REVIEW A, 1998, 58 (03) :1833-1839
[19]  
GRASSL M, 2000, COMMUNICATION
[20]  
GRASSL M, 1997, QUANTPH9712040