Rapid synthesis of carbon nanotubes by solid-state metathesis reactions

被引:31
作者
O'Loughlin, JL
Kiang, CH
Wallace, CH
Reynolds, TK
Rao, L
Kaner, RB [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Exot Mat Inst, Los Angeles, CA 90095 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2001年 / 105卷 / 10期
关键词
D O I
10.1021/jp0037100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state exchange reactions between carbon halides and lithium acetylide catalyzed by cobalt dichloride enable the rapid synthesis of carbon nanotubes as observed by TEM. Without the catalyst, only graphite and amorphous carbon form. These reactions are self-propagating and can be initiated with a heated filament. Regulating the reaction temperature provides a method for controlling these reactions. The theoretical temperature for a reaction between hexachloroethane and lithium acetylide is 2302 K assuming adiabatic conditions. Calculations indicate that increasing the length of the carbon chain can lower the reaction temperature by up to 61 K. Replacing chlorine with fluorine can further reduce the temperature by up to 384 K. Replacing chlorine with hydrogen can, in principle, lower the reaction temperature by up to 925 K. These calculations suggest that polymers such as poly(vinyl chloride), poly(vinylidene chloride), and poly(tetrafluoroethylene) can be used as precursors to carbon nanotubes. This is confirmed experimentally using a copolymer of poly(vinyl chloride) and poly(vinylidene chloride) with a 5 mol % (based on carbon) iron trichloride catalyst to produce multi-wailed carbon nanotubes.
引用
收藏
页码:1921 / 1924
页数:4
相关论文
共 33 条
[1]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[2]   RAPID SOLID-STATE SYNTHESIS OF MATERIALS FROM MOLYBDENUM-DISULFIDE TO REFRACTORIES [J].
BONNEAU, PR ;
JARVIS, RF ;
KANER, RB .
NATURE, 1991, 349 (6309) :510-512
[3]   Pure carbon nanoscale devices: Nanotube heterojunctions [J].
Chico, L ;
Crespi, VH ;
Benedict, LX ;
Louie, SG ;
Cohen, ML .
PHYSICAL REVIEW LETTERS, 1996, 76 (06) :971-974
[4]   Synthesis of carbon nanotubes from bulk polymer [J].
Cho, WS ;
Hamada, E ;
Kondo, Y ;
Takayanagi, K .
APPLIED PHYSICS LETTERS, 1996, 69 (02) :278-279
[5]   Nanotubes as nanoprobes in scanning probe microscopy [J].
Dai, HJ ;
Hafner, JH ;
Rinzler, AG ;
Colbert, DT ;
Smalley, RE .
NATURE, 1996, 384 (6605) :147-150
[6]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[7]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[8]   LARGE-SCALE SYNTHESIS OF CARBON NANOTUBES [J].
EBBESEN, TW ;
AJAYAN, PM .
NATURE, 1992, 358 (6383) :220-222
[9]   Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors [J].
Gillan, EG ;
Kaner, RB .
CHEMISTRY OF MATERIALS, 1996, 8 (02) :333-343
[10]   CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION [J].
GUO, T ;
NIKOLAEV, P ;
THESS, A ;
COLBERT, DT ;
SMALLEY, RE .
CHEMICAL PHYSICS LETTERS, 1995, 243 (1-2) :49-54