Semiparametric estimation of multinomial discrete-choice models using a subset of choices

被引:55
作者
Fox, Jeremy T. [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
关键词
D O I
10.1111/j.0741-6261.2007.00123.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
Nonlogit maximum-likelihood estimators are inconsistent when using data on a subset of the choices available to agents. I show that the semiparametric, multinomial maximum-score estimator is consistent when using data on a subset of choices. No information is required for choices outside of the subset. The required conditions about the error terms are the same conditions as for using all the choices. Estimation can proceed under additional restrictions if agents have unobserved, random consideration sets. A solution exists for instrumenting endogenous continuous variables. Monte Carlo experiments show the estimator performs well using small subsets of choices.
引用
收藏
页码:1002 / 1019
页数:18
相关论文
共 26 条
[11]   Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator [J].
Delgado, MA ;
Rodríguez-Poo, JM ;
Wolf, M .
ECONOMICS LETTERS, 2001, 73 (02) :241-250
[12]  
GOEREE JK, 2004, REGULAR QUANTAL RESP
[13]  
GOEREE M, 2005, ADVERTISING US PERSO
[14]   A SMOOTHED MAXIMUM SCORE ESTIMATOR FOR THE BINARY RESPONSE MODEL [J].
HOROWITZ, JL .
ECONOMETRICA, 1992, 60 (03) :505-531
[15]  
HOROWITZ JL, 1998, LECT NOTES STAT, V131
[16]   CUBE ROOT ASYMPTOTICS [J].
KIM, JY ;
POLLARD, D .
ANNALS OF STATISTICS, 1990, 18 (01) :191-219
[17]   IDENTIFICATION OF BINARY RESPONSE MODELS [J].
MANSKI, CF .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :729-738
[19]  
Manski Charles., 1975, Journal of Econometrics, V3, P205
[20]   NONPARAMETRIC IDENTIFICATION AND ESTIMATION OF POLYCHOTOMOUS CHOICE MODELS [J].
MATZKIN, RL .
JOURNAL OF ECONOMETRICS, 1993, 58 (1-2) :137-168