Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase:: Allosteric coupling between the T1 and trinuclear Cu sites
被引:48
作者:
Augustine, Anthony J.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Augustine, Anthony J.
[2
]
Kragh, Mads Emil
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USA
Univ Copenhagen, Fac Life Sci, Dept Nat Sci, Copenhagen, DenmarkSUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Kragh, Mads Emil
[2
,3
]
Sarangi, Ritimukta
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Sarangi, Ritimukta
[2
]
Fujii, Satoshi
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Fujii, Satoshi
[2
]
Liboiron, Barry D.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Liboiron, Barry D.
[2
]
Stoj, Christopher S.
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Stoj, Christopher S.
[1
]
Kosman, Daniel J.
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Kosman, Daniel J.
[1
]
Hodgson, Keith O.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USA
Stanford Univ, SLAC, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Hodgson, Keith O.
[2
,4
]
Hedman, Britt
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, SLAC, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Hedman, Britt
[4
]
Solomon, Edward I.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USA
Stanford Univ, SLAC, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USASUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
Solomon, Edward I.
[2
,4
]
机构:
[1] SUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Univ Copenhagen, Fac Life Sci, Dept Nat Sci, Copenhagen, Denmark
[4] Stanford Univ, SLAC, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA
The multicopper oxidases catalyze the 4e(-) reduction of O-2 to H2O coupled to the 1e(-) oxidation of 4 equiv of substrate. This activity requires four Cu atoms, including T1, T2, and coupled binuclear T3 sites. The T2 and T3 sites form a trinuclear cluster (TNC) where O-2 is reduced. The T1 is coupled to the TNC through a T1-Cys-His-T3 electron transfer (ET) pathway. In this study the two T3 Cu coordinating His residues which lie in this pathway in Fet3 have been mutated, H483Q, H483C, H485Q, and H485C, to study how perturbation at the TNC impacts the T1 Cu site. Spectroscopic methods, in particular resonance Raman (rR), show that the change from His to G1n to Cys increases the covalency of the T1 Cu-S Cys bond and decreases its redox potential. This study of T1-TNC interactions is then extended to Rhus vernicifera laccase where a number of well-defined species including the catalytically relevant native intermediate (NI) can be trapped for spectroscopic study. The T1 Cu-S covalency and potential do not change in these species relative to resting oxidized enzyme, but interestingly the differences in the structure of the TNC in these species do lead to changes in the T1 Cu rR spectrum. This helps to confirm that vibrations in the cysteine side chain of the T1 Cu site and the protein backbone couple to the Cu-S vibration. These changes in the side chain and backbone provide a possible mechanism for regulating intramolecular T1 to TNC ET in NI and partially reduced enzyme forms for efficient turnover.