Distances between the b-subunits in the tether domain of F0F1-ATP synthase from E. coli

被引:40
作者
Steigmiller, S
Börsch, M
Gräber, P
Huber, M
机构
[1] Leiden Univ, Dept Mol Phys, NL-2300 RA Leiden, Netherlands
[2] Univ Freiburg, Inst Phys Chem, D-7800 Freiburg, Germany
[3] Univ Stuttgart, Inst Phys 3, Stuttgart, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2005年 / 1708卷 / 02期
关键词
H+-ATP synthase; b-subunit; site-directed spin labeling; MTSL; EPR spectroscopy; DEER;
D O I
10.1016/j.bbabio.2005.03.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The arrangement of the b-subunits in the holo-enzyme F0F1-ATP synthase from E. coli is investigated by site-directed mutagenesis spin-label EPR. F0F1-ATP synthases couple proton translocation with the synthesis of ATP from ADP and phosphate. The hydrophilic F-1-part and the hydrophobic membrane-integrated F-0-part are connected by a central and a peripheral stalk. The peripheral stalk consists of two b-subunits. Cysteine mutations are introduced in the tether domain of the b-subunit at b-40, b-51, b-53, b-62 or b-64 and labeled with a nitroxide spin label. Conventional (9 GHz), high-field (95 GHz) and pulsed EPR spectroscopy reveal: All residues are in a relatively polar environment, with mobilities consistent with helix sites. The distance between the spin labels at each b-subunit is 2.9 nm in each mutant, revealing a parallel arrangement of the two helices. They can be in-register but separated by a large distance (1.9 nm), or at close contact and displaced along the helix axes by maximally 2.7 nm, which excludes an in-register coiled-coil model suggested previously for the b-subunit. Binding of the non-hydrolysable nucleotide AMPPNP to the spin-labeled enzyme had no significant influence on the distances compared to that in the absence of nucleotides. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 54 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]  
Altendorf K, 2000, J EXP BIOL, V203, P19
[3]   Protein structure determination using long-distance constraints from double-quantum coherence ESR: Study of T4 lysozyme [J].
Borbat, PP ;
Mchaourab, HS ;
Freed, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (19) :5304-5314
[4]   Stepwise rotation of the γ-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer [J].
Börsch, M ;
Diez, M ;
Zimmermann, B ;
Reuter, R ;
Gräber, P .
FEBS LETTERS, 2002, 527 (1-3) :147-152
[5]   Direct visualisation of conformational changes in EF0F1 by electron microscopy [J].
Böttcher, B ;
Bertsche, I ;
Reuter, R ;
Gräber, P .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (02) :449-457
[6]   Direct indication for the existence of a double stalk in CF0F1 [J].
Böttcher, B ;
Schwarz, L ;
Gräber, P .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 281 (05) :757-762
[7]   ATP synthase - past and future [J].
Boyer, PD .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1365 (1-2) :3-9
[8]   Mechanism of the F1F0-type ATP synthase, a biological rotary motor [J].
Capaldi, RA ;
Aggeler, R .
TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (03) :154-160
[9]   Molecular motion of spin labeled side chains in α-helices:: Analysis by variation of side chain structure [J].
Columbus, L ;
Kálai, T ;
Jekö, J ;
Hideg, K ;
Hubbell, WL .
BIOCHEMISTRY, 2001, 40 (13) :3828-3846
[10]   The "second stalk" of Escherichia coli ATP synthase:: structure of the isolated dimerization domain [J].
Del Rizzo, PA ;
Bi, Y ;
Dunn, SD ;
Shilton, BH .
BIOCHEMISTRY, 2002, 41 (21) :6875-6884