MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis-related miRNAs

被引:122
作者
Aigner, Achim [1 ]
机构
[1] Univ Marburg, Inst Pharmacol, Fac Med, D-35032 Marburg, Germany
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2011年 / 89卷 / 05期
关键词
Metastasis; MicroRNAs; miRNA; Novel miRNA-based therapies; TUMOR-SUPPRESSOR GENE; BREAST-CANCER; CELL-MIGRATION; IN-VIVO; EXPRESSION PROFILES; RNA-INTERFERENCE; PROSTATE-CANCER; DOWN-REGULATION; MIR-200; FAMILY; HUMAN CHOLANGIOCARCINOMA;
D O I
10.1007/s00109-010-0716-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The management of tumor cell invasion and metastasis is instrumental in cancer therapy, since metastases are the prime reason for cancer patient mortality. Various cellular mechanisms and underlying molecular pathways relevant for metastasis have been identified so far, providing a basis for antimetastatic drugs. MicroRNAs (miRNAs) are highly conserved, small noncoding RNA molecules that have been shown to regulate various cellular processes by interfering with protein expression through posttranscriptional repression or mRNA degradation. More importantly, beyond their roles in physiological processes, many miRNAs are aberrantly expressed in various pathologies including cancer and regulate tumor- and metastasis-associated genes. Their pivotal role in metastasis has emerged only recently. After an introduction into the mechanisms of miRNA action, this review article describes the roles of miRNAs in cancer invasion and metastasis. Various miRNAs are discussed with regard to their upstream regulators, downstream target genes, and pro-/antimetastatic effects. A table provides a comprehensive overview of miRNAs that are misregulated/relevant in metastasis and the current knowledge regarding their underlying molecular effects. Furthermore, therapeutic approaches based on miRNAs, either as drugs or as therapeutic targets, are described prior to the discussion of the delivery of miRNA-based therapeutics as novel strategy in antimetastatic treatment.
引用
收藏
页码:445 / 457
页数:13
相关论文
共 186 条
[11]   The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities [J].
Bonci, Desiree ;
Coppola, Valeria ;
Musumeci, Maria ;
Addario, Antonio ;
Giuffrida, Raffaella ;
Memeo, Lorenzo ;
D'Urso, Leonardo ;
Pagliuca, Alfredo ;
Biffoni, Mauro ;
Labbaye, Catherine ;
Bartucci, Monica ;
Muto, Giovanni ;
Peschle, Cesare ;
De Maria, Ruggero .
NATURE MEDICINE, 2008, 14 (11) :1271-1277
[12]   The Tumor Suppressors p53, p63, and p73 Are Regulators of MicroRNA Processing Complex [J].
Boominathan, Lakshmanane .
PLOS ONE, 2010, 5 (05)
[13]   The role of let-7 in cell differentiation and cancer [J].
Boyerinas, Benjamin ;
Park, Sun-Mi ;
Hau, Annika ;
Murmann, Andrea E. ;
Peter, Marcus E. .
ENDOCRINE-RELATED CANCER, 2010, 17 (01) :F19-F36
[14]   The role of microRNAs in metastasis and epithelial-mesenchymal transition [J].
Bracken, C. P. ;
Gregory, P. A. ;
Khew-Goodall, Y. ;
Goodall, G. J. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2009, 66 (10) :1682-1699
[15]   let-7 microRNAs in development, stem cells and cancer [J].
Buessing, Ingo ;
Slack, Frank J. ;
Grosshans, Helge .
TRENDS IN MOLECULAR MEDICINE, 2008, 14 (09) :400-409
[16]   RNAi therapeutics: a potential new class of pharmaceutical drugs [J].
Bumcrot, David ;
Manoharan, Muthiah ;
Koteliansky, Victor ;
Sah, Dinah W. Y. .
NATURE CHEMICAL BIOLOGY, 2006, 2 (12) :711-719
[17]   A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells [J].
Burk, Ulrike ;
Schubert, Joerg ;
Wellner, Ulrich ;
Schmalhofer, Otto ;
Vincan, Elizabeth ;
Spaderna, Simone ;
Brabletz, Thomas .
EMBO REPORTS, 2008, 9 (06) :582-589
[18]   Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J].
Calin, GA ;
Sevignani, C ;
Dan Dumitru, C ;
Hyslop, T ;
Noch, E ;
Yendamuri, S ;
Shimizu, M ;
Rattan, S ;
Bullrich, F ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2999-3004
[19]   MicroRNA signatures in human cancers [J].
Calin, George A. ;
Croce, Carlo M. .
NATURE REVIEWS CANCER, 2006, 6 (11) :857-866
[20]   Loss of miR-200c Expression Induces an Aggressive, Invasive, and Chemoresistant Phenotype in Non-Small Cell Lung Cancer [J].
Ceppi, Paolo ;
Mudduluru, Giridhar ;
Kumarswamy, Regalla ;
Rapa, Ida ;
Scagliotti, Giorgio V. ;
Papotti, Mauro ;
Allgayer, Heike .
MOLECULAR CANCER RESEARCH, 2010, 8 (09) :1207-1216