A survey on deep learning in medical image analysis

被引:7880
作者
Litjens, Geert [1 ]
Kooi, Thijs [1 ]
Bejnordi, Babak Ehteshami [1 ]
Setio, Arnaud Arindra Adiyoso [1 ]
Ciompi, Francesco [1 ]
Ghafoorian, Mohsen [1 ]
van der Laak, Jeroen A. W. M. [1 ]
van Ginneken, Bram [1 ]
Sanchez, Clara I. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Diagnost Image Anal Grp, Nijmegen, Netherlands
关键词
Deep learning; Convolutional neural networks; Medical imaging; Survey; CONVOLUTIONAL NEURAL-NETWORK; ANATOMICAL LANDMARK DETECTION; BRAIN-TUMOR SEGMENTATION; COMPUTER-AIDED DETECTION; LEFT-VENTRICLE; AUTOMATED DETECTION; FEATURE REPRESENTATION; HIERARCHICAL FEATURES; DIABETIC-RETINOPATHY; CT IMAGE;
D O I
10.1016/j.media.2017.07.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 88
页数:29
相关论文
共 348 条
[1]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[2]   Cell Segmentation Proposal Network for Microscopy Image Analysis [J].
Akram, Saad Ullah ;
Kannala, Juho ;
Eklund, Lauri ;
Heikkila, Janne .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :21-29
[3]  
Alansary Amir, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P589, DOI 10.1007/978-3-319-46723-8_68
[4]   AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images [J].
Albarqouni, Shadi ;
Baur, Christoph ;
Achilles, Felix ;
Belagiannis, Vasileios ;
Demirci, Stefanie ;
Navab, Nassir .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1313-1321
[5]  
Cruz-Roa AA, 2013, LECT NOTES COMPUT SC, V8150, P403, DOI 10.1007/978-3-642-40763-5_50
[6]  
Anavi Y, 2015, IEEE ENG MED BIO, P2940, DOI 10.1109/EMBC.2015.7319008
[7]   Multi-dimensional Gated Recurrent Units for the Segmentation of Biomedical 3D-Data [J].
Andermatt, Simon ;
Pezold, Simon ;
Cattin, Philippe .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :142-151
[8]  
[Anonymous], I S BIOMED IMAGING
[9]  
[Anonymous], P SPIE MED IMAGING
[10]  
[Anonymous], J BIOMED OPT