Defective endothelial nitric oxide synthase signaling is mediated by rho-kinase activation in rats with secondary biliary cirrhosis

被引:39
作者
Anegawa, Go [1 ]
Kawanaka, Hirofumi [1 ]
Yoshida, Daisuke [1 ,2 ]
Konishi, Kozo [1 ,2 ]
Yamaguchi, Shohei [1 ,2 ]
Kinjo, Nao [1 ]
Taketomi, Akinobu [1 ]
Hashizume, Makoto [2 ]
Shimokanva, Hiroaki [3 ]
Maehara, Yoshihiko [1 ]
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept Surg & Sci, Higashi Ku, Fukuoka 8128582, Japan
[2] Kyushu Univ, Grad Sch Med Sci, Dept Disaster & Emergency Med, Fukuoka 8128582, Japan
[3] Tohoku Univ, Grad Sch Med, Dept Cardiovasc Med, Sendai, Miyagi 980, Japan
关键词
D O I
10.1002/hep.22089
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
In liver cirrhosis, down-regulation of endothelial nitric oxide synthase (eNOS) has been implicated as a cause of increased intrahepatic resistance. We investigated whether Rho-kinase activation is one of the molecular mechanisms involved in defective eNOS signaling in secondary biliary cirrhosis. Liver cirrhosis was induced by bile duct ligation (BDL). We measured mean arterial pressure (MAP), portal venous pressure (PVP), and hepatic tissue blood flow (HTBF) during intravenous infusion of saline (control), 0.3, 1, or 2 mg/kg/hour fasudil for 60 minutes. In BDL rats, I and 2 mg/kg/hour fasudil significantly reduced PVP by 20% compared with controls but had no effect on HTBF. MAP was significantly reduced in response to 2 mg/kg/hour fasudil. In the livers of BDL rats, I and 2 mg/kg/hour fasudil significantly suppressed Rho-kinase activity and significantly increased eNOS phosphorylation, compared with controls. Fasudil significantly reduced the binding of serine/threonine Akt/PKB (Akt) to Rho-kinase and increased the binding of Akt to eNOS. These results show in secondary biliary cirrhosis that (1) Rho-kinase activation with resultant eNOS down-regulation is substantially involved in the pathogenesis of portal hypertension and (2) Rho-kinase might interact with Akt and subsequently inhibit the binding of Akt to eNOS.
引用
收藏
页码:966 / 977
页数:12
相关论文
共 54 条
[1]   Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats [J].
Abe, K ;
Shimokawa, H ;
Morikawa, K ;
Uwatoku, T ;
Oi, K ;
Matsumoto, Y ;
Hattori, T ;
Nakashima, Y ;
Kaibuchi, K ;
Sueishi, K ;
Takeshita, A .
CIRCULATION RESEARCH, 2004, 94 (03) :385-393
[2]   Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase [J].
Amano, M ;
Chihara, K ;
Kimura, K ;
Fukata, Y ;
Nakamura, N ;
Matsuura, Y ;
Kaibuchi, K .
SCIENCE, 1997, 275 (5304) :1308-1311
[3]   FORWARD AND BACKWARD FLOW MECHANISMS OF PORTAL-HYPERTENSION - RELATIVE CONTRIBUTIONS IN THE RAT MODEL OF PORTAL-VEIN STENOSIS [J].
BENOIT, JN ;
WOMACK, WA ;
HERNANDEZ, L ;
GRANGER, DN .
GASTROENTEROLOGY, 1985, 89 (05) :1092-1096
[4]   CALCIUM-DEPENDENT NITRIC-OXIDE SYNTHESIS IN ENDOTHELIAL CYTOSOL IS MEDIATED BY CALMODULIN [J].
BUSSE, R ;
MULSCH, A .
FEBS LETTERS, 1990, 265 (1-2) :133-136
[5]   G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton [J].
Cant, SH ;
Pitcher, JA .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (07) :3088-3099
[6]   Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase [J].
Chihara, K ;
Amano, M ;
Nakamura, N ;
Yano, T ;
Shibata, M ;
Tokui, T ;
Ichikawa, H ;
Ikebe, R ;
Ikebe, M ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (40) :25121-25127
[7]   Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J].
Dimmeler, S ;
Fleming, I ;
Fisslthaler, B ;
Hermann, C ;
Busse, R ;
Zeiher, AM .
NATURE, 1999, 399 (6736) :601-605
[8]   CALMODULIN-DEPENDENT ENDOTHELIUM-DERIVED RELAXING FACTOR NITRIC-OXIDE SYNTHASE ACTIVITY IS PRESENT IN THE PARTICULATE AND CYTOSOLIC FRACTIONS OF BOVINE AORTIC ENDOTHELIAL-CELLS [J].
FORSTERMANN, U ;
POLLOCK, JS ;
SCHMIDT, HHHW ;
HELLER, M ;
MURAD, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (05) :1788-1792
[9]  
FRIEDMAN SL, 1993, NEW ENGL J MED, V328, P1828
[10]   Regulation of endothelium-derived nitric oxide production by the protein kinase Akt [J].
Fulton, D ;
Gratton, JP ;
McCabe, TJ ;
Fontana, J ;
Fujio, Y ;
Walsh, K ;
Franke, TF ;
Papapetropoulos, A ;
Sessa, WC .
NATURE, 1999, 399 (6736) :597-601